Programming in Game Space: How to Represent Parallel
Programming Concepts in an Educational Game

Jichen Zhu Katelyn Alderfer Anushay Furgan
jichen@drexel.com kmb562 @drexel.edu anushay.furqan @ gmail.com
Drexel University Drexel University Drexel University
Philadelphia, USA Philadelphia, USA Philadelphia, USA
Jessica Nebolsky Bruce Char Brian Smith
jin63 @drexel.edu charbw @drexel.edu bks59 @drexel.edu
Drexel University Drexel University Drexel University
Philadelphia, USA Philadelphia, USA Philadelphia, USA
Jennifer Villareale Santiago Ontafién
jmv85@drexel.edu $0367 @drexel.edu
Drexel University Drexel University
Philadelphia, USA Philadelphia, USA

ABSTRACT

Concurrent and parallel programming (CPP) skills are increasingly
important in today’s world of parallel hardware. However, the con-
ceptual leap from deterministic sequential programming to CPP is
notoriously challenging to make. Our educational game Parallel is
designed to support the learning of CPP core concepts through a
game-based learning approach, focusing on the connection between
gameplay and CPP. Through a 10-week user study (n 25) in an
undergraduate concurrent programming course, the first empirical
study for a CPP educational game, our results show that Parallel
offers both CPP knowledge and student engagement. Furthermore,
we provide a new framework to describe the design space for pro-
gramming games in general.

ACM Reference Format:

Jichen Zhu, Katelyn Alderfer, Anushay Furqan, Jessica Nebolsky, Bruce
Char, Brian Smith, Jennifer Villareale, and Santiago Ontafién. 2019. Pro-
gramming in Game Space: How to Represent Parallel Programming Con-
cepts in an Educational Game. In The Fourteenth International Confer-
ence on the Foundations of Digital Games (FDG ’19), August 26-30, 2019,
San Luis Obispo, CA, USA. ACM, New York, NY, USA, 10 pages. https:
//doi.org/10.1145/3337722.3337749

1 INTRODUCTION

Modern computing is increasingly handled in a parallel fashion. Due
to the significant increase of hardware parallelism, the computing
workforce must shift from the sequential computing paradigm to
new programming models and tools. However, the conceptual shift
from sequential to parallel programming is notoriously challenging

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

FDG 19, August 26-30, 2019, San Luis Obispo, CA, USA

© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7217-6/19/08. .. $15.00
https://doi.org/10.1145/3337722.3337749

for programmers to make [2, 3, 17]. The foundation of sequential
programming, where most people receive their first exposure to
programming, lies in its deterministic behavior: A given set of in-
puts to a program should produce the same actions and results. By
contrast, concurrent and parallel programming (CPP) involves non-
deterministic behaviors since it is impossible to predict the order in
which different threads or processes will execute their tasks. This
issue makes it considerably more challenging to guarantee that a
program will correctly perform its expected operations, requiring
systematic thinking skills in non-deterministic environments. Even
accomplished programmers often encounter significant conceptual
and practical challenges when writing parallel software.

This shift from deterministic to non-deterministic algorithmic
thinking imposes significant challenges in CS education. Despite
the growing importance of the subject, little research has been done
to understand how to help students to learn concurrent and parallel
programming concepts effectively. With the popularity and suc-
cess of teaching sequential programming skills through educational
games [12, 23], we propose a game-based learning approach [10] to
help students learn and practice core CPP concepts through game-
play.

In this paper, we present Parallel', an educational game designed
specifically to teach CPP core concepts. While a few games related
to parallel programming exist, ours is the first educational game
to focus on this important CS subject that is evaluated through
empirical data. We report results from a 10-week user study (n 25)
where the game replaced supplemental material for an undergraduate
CS course on CPP. Overall, our results show that students (1) made
connections between the gameplay and CPP concepts, (2) enjoyed
the visual metaphors and gameplay of Parallel, and (3) liked having
the game as an alternative educational tool.

The cognitive challenges to learn and master CPP motivated us to
understand the design space for existing educational programming
games further and identify areas that may be particularly suitable for
CPP. Our analysis contributes to the programming game literature

!Game Release: https://github.com/santiontanon/Parallel

https://doi.org/10.1145/3337722.3337749
https://doi.org/10.1145/3337722.3337749
https://doi.org/10.1145/3337722.3337749
https://github.com/santiontanon/Parallel

FDG 19, August 26-30, 2019, San Luis Obispo, CA, USA

by proposing a new framework of the design space based on how
the player authors the algorithms and how the latter are executed in
the game. Parallel offers a case study of how to connect gameplay
with programming concepts in a less explored area of the design
space, where algorithms are both authored and executed in what
we call the game space. This paper shares how our game design,
notably though core mechanics and dynamics, maps to CPP concepts,
and problem-solving challenges. Our design outcome can offer an
example for researchers and designers interested in game-based
educational interventions for CPP and procedural literacy in general.

In the remainder of this paper, we first summarize existing related
work on programming games. We then propose our framework on
the design space of representing the algorithmic processes in pro-
gramming games. After that, we describe the design of Parallel,
focusing on how the gameplay connects to CPP concepts. We then
report our evaluation methodology and experimental results. The
paper closes with conclusions and future directions.

2 BACKGROUND

A significant amount of literature exists at the intersection of games
and learning the skills of algorithmic thinking. Following the tradi-
tion of Scratch [26] and ALICE [16], many modern online learning
environments such as code.org and the Khan Academy motivate
novice programmers to learn through creating their own game-like
projects. As games become an accepted media for education and
training [10, 24, 25, 27], growing evidence shows that well-designed
educational games not only sustain students’ motivation for learning
to program better than their traditional counterparts, but also enhance
the learning outcome [5, 7, 13, 22, 25].

Recent public initiatives such as CS for all and Hour of Code
have fueled a surge of interest in learning programming. As a re-
sult, many interesting programming games were created recently.
Salient examples include, but are not limited to, Cargo Bot, Check
i0, Code Combat, CodeSpells, Human Resource Machine, Light Bot,
RoboCode, SpaceChem and Manufactoria. These games cut across
different programming language abstractions (visual blocks, textual
blocks and specific programming languages such as Java), different
game genres (puzzle games, adventure games, and sandbox games),
and different types of programming competency (comprehension,
writing, and debugging) [12, 28].

However, the majority of these educational programming games
are for sequential programming and mainly target the introductory
level [12, 23]. While they have shown success in making sequential
programming more engaging to novice programmers, these games
cannot be easily adapted to cover CPP concepts because the different
nature of CPP paradigm and because CPP students have typically
mastered the basics of programming and therefore need different
types of scaffolding.

Two current approaches to teaching CPP with computer games
exist. First, educators and researchers have used existing games that
happen to have related elements to teach CPP concepts [1, 18, 19].
For example, Marmorstein [19] employs an existing game called
OpenTTD, an open source implementation of Transport Tycoon
Deluxe. They use the train networks in the game to illustrate to stu-
dents how the synchronization concepts in CPP such as semaphores
work. Although this is a helpful approach, these games were not

Zhu, et al.

specifically designed to teach CPP. As a result, they do not have all
the essential core concepts and sometimes contains information that
is at best inconsistent with CPP concepts.

A second approach is to design programming games for CPP
concepts. Existing examples include Parallel Bots, Parallel Blobs,
SpaceChem, Parapple and Deadlock Empire. Most of these games,
however, do not fully capture all the key parallel programming
concepts. For example, Parallel Bots and Parallel Blobs [14] are
deterministic and therefore do not cover the core CPP concept of
non-determinism. SpaceChem does not contain non-determinism
and only supports two threads, greatly reducing the complexity of
the problem space. Finally, while Parapple is non-deterministic, it
does not cover basic synchronization concepts such as semaphores
or critical sections. Due to the missing core concepts and the limited
complexity, the games mentioned above at their current state cannot
adequately represent real challenges in CPP and thus train players
the necessary problem-solving skills. Parallel is amongst the first
tempts to fill in this gap.

An interesting well-designed exception is Deadlock Empire, where
rather than programming, the player plays the role of the “sched-
uler”, trying to find an execution order of two threads which causes
execution issues. Through this design, the game captures most CPP
concepts accurately. Although it only supports two to three threads,
the gameplay of Deadlock Empire can be directly transferred to
actual parallel programming. Finally, none of these games have been
formally evaluated via user studies.

3 REPRESENTATION OF ALGORITHMIC
PROCESSES

As programming games for CPP is a relatively under-explored area,
we look at the design space for existing programming games for
useful patterns and identify potential gaps. In this paper, we focus on
a critical design question for all programming games — how does
the act of programming intersect with the game world.

We propose to analyze the design space for programming games
based on whether the authoring of the program is separate from its
execution in the game. We use the term “game space” to describe
the ludic world where the game exists, typically in the form of a 2D
or 3D graphic world where the player character(s) live. For instance,
in Light Bot, the game space is where the robot player character
traverses the grid-based terrain (left side of the Light Bot screenshot
in Fig. 1). We use the term “algorithm space” to describe the space
where the algorithms are specified (usually textually). In Light Bot,
the algorithm space is where the players arrange the arrows to control
the robot (right side of the Light Bot screenshot in Fig. 1).

Using whether the authoring and the execution of the program
happens in algorithm or game space, we chart existing programming
games in Fig. 1. We noticed that in most programming games, the
player programs in one space and sees its execution in another.
The overwhelming majority of games ask the user to program in
the algorithm space and then see the execution in the game space.
Notice in the example of Light Bot that even though the program
and algorithm spaces are placed next to each other in the screen,
they each operate a separate conceptual space. Similar to the idea of
program visualization [20], the game space, in this case, is used only
to display the run-time execution of the program, not the program

Programming in Game Space FDG '19, August 26—30, 2019, San Luis Obispo, CA, USA

Figure 1: Classi cation of programming games based on the authoring and execution spaces. Games in yellow focus on sequential
programming, and games in green focus on parallel or concurrent programming. We also show screenshots of how the authoring and
execution spaces look in the games.

itself. By contrast, in games such sinufactoriawhere both the
authoring and execution of the program happens in the same (game)
space, the game space itgslthe program.

To provide design exibility, we separate where the player codes
and where the code is executed. In games using this design, unlike
Manufactorig the complexity of what programs can be authored is
not bounded by the game environment. Also, if the authoring is in
textual format, there is higher transferability to actual programming.
However, this design also imposes additional mental challenges for
learners. Identi ed in the software visualization community as the
“missing link” problem, when the source code and visualization take
place separately, it is dif cult for the programmer to directly trace
an error that occurred in the visualization to speci c locations in

the source codelfl]. Similar challenges may apply to programming Figure 2: A screen shot ofParallel, in a level with four arrows
games. (four threads) representing the concepts oface conditionand of

Given the complexity of CPP problems, we believe that overlap- message passingepresented by what we callexchange points
ping its algorithm space and game space may be more bene cial

for learning as players do not need to switch between the two areas
while they author the program and debug. While it is possible to
design a game in the algorithm space (eDgadlock Empirg we
decided the game space affords more of the bene ts of game-basecﬁ
learning and offers an interesting design challenge. Therefore, we
designedParallel by having both authoring and execution in game

parallel. Once the player successfully delivers all required packages,
he wins and moves to the next levBhrallel currently has 18
and-authored levels, with increasing dif culty. The game has a
procedural content generation component that can automatically
generate more level29], but this feature is not the focus of this

space. paper and is not included in this evaluati®arallel can be used

as complementary material in a regular course curriculum or as an
4 DESIGNING PARALLEL informal learning game. The problem space that Parallel covers focus
Parallel (Fig. 2) is a single player 2D puzzle game designed to teach on synchronization problems with a xed number of threads, this
concurrent and parallel programming core concepts, espeniatly includes most key concepts in CPP: mutual exclusion and critical

determinismsynchronizationandef ciency. Our target audience is sections, deadlocks, race conditions, starvation and semaphores, and
CS undergraduate students who are interested in basic concepts igan illustrate Atomicity-Violation Bugs, Order-Violation Bugs, and
CPP. In each level, a player places semaphores and buttons to direcbeadlock Bugsf]. Moreover, the game also supports some concepts
arrows, which carry packages and move along pre-de ned tracks, of ef ciency and parallel speed-up.

to the designated delivery points. In essence, the player designs For our design, we wanted the game to be 1) internally consistent
a synchronization mechanisto coordinate threads executing in among the gameplay elements (playability), 2) externally consistent

	Abstract
	1 Introduction
	2 Background
	3 Representation of Algorithmic Processes
	4 Designing Parallel
	4.1 CPP Concepts as Game Mechanics
	4.2 Practicing CPP Problem Solving through Game Dynamics

	5 Evaluation through Class Implementation
	5.1 Surveys and Focus Group
	5.2 Analysis

	6 Results
	6.1 Survey Results
	6.2 Focus Group Results

	7 DISCUSSION
	8 Conclusions and Future Work
	9 Acknowledgements
	References

