
Programming in Game Space: How to Represent Parallel
Programming Concepts in an Educational Game

Jichen Zhu
jichen@drexel.com
Drexel University
Philadelphia, USA

Katelyn Alderfer
kmb562@drexel.edu

Drexel University
Philadelphia, USA

Anushay Furqan
anushay.furqan@gmail.com

Drexel University
Philadelphia, USA

Jessica Nebolsky
jjn63@drexel.edu
Drexel University
Philadelphia, USA

Bruce Char
charbw@drexel.edu
Drexel University
Philadelphia, USA

Brian Smith
bks59@drexel.edu
Drexel University
Philadelphia, USA

Jennifer Villareale
jmv85@drexel.edu
Drexel University
Philadelphia, USA

Santiago Ontañón
so367@drexel.edu
Drexel University
Philadelphia, USA

ABSTRACT
Concurrent and parallel programming (CPP) skills are increasingly
important in today’s world of parallel hardware. However, the con-
ceptual leap from deterministic sequential programming to CPP is
notoriously challenging to make. Our educational game Parallel is
designed to support the learning of CPP core concepts through a
game-based learning approach, focusing on the connection between
gameplay and CPP. Through a 10-week user study (n 25) in an
undergraduate concurrent programming course, the first empirical
study for a CPP educational game, our results show that Parallel
offers both CPP knowledge and student engagement. Furthermore,
we provide a new framework to describe the design space for pro-
gramming games in general.

ACM Reference Format:
Jichen Zhu, Katelyn Alderfer, Anushay Furqan, Jessica Nebolsky, Bruce
Char, Brian Smith, Jennifer Villareale, and Santiago Ontañón. 2019. Pro-
gramming in Game Space: How to Represent Parallel Programming Con-
cepts in an Educational Game. In The Fourteenth International Confer-
ence on the Foundations of Digital Games (FDG ’19), August 26–30, 2019,
San Luis Obispo, CA, USA. ACM, New York, NY, USA, 10 pages. https:
//doi.org/10.1145/3337722.3337749

1 INTRODUCTION
Modern computing is increasingly handled in a parallel fashion. Due
to the significant increase of hardware parallelism, the computing
workforce must shift from the sequential computing paradigm to
new programming models and tools. However, the conceptual shift
from sequential to parallel programming is notoriously challenging

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
FDG ’19, August 26–30, 2019, San Luis Obispo, CA, USA
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7217-6/19/08. . . $15.00
https://doi.org/10.1145/3337722.3337749

for programmers to make [2, 3, 17]. The foundation of sequential
programming, where most people receive their first exposure to
programming, lies in its deterministic behavior: A given set of in-
puts to a program should produce the same actions and results. By
contrast, concurrent and parallel programming (CPP) involves non-
deterministic behaviors since it is impossible to predict the order in
which different threads or processes will execute their tasks. This
issue makes it considerably more challenging to guarantee that a
program will correctly perform its expected operations, requiring
systematic thinking skills in non-deterministic environments. Even
accomplished programmers often encounter significant conceptual
and practical challenges when writing parallel software.

This shift from deterministic to non-deterministic algorithmic
thinking imposes significant challenges in CS education. Despite
the growing importance of the subject, little research has been done
to understand how to help students to learn concurrent and parallel
programming concepts effectively. With the popularity and suc-
cess of teaching sequential programming skills through educational
games [12, 23], we propose a game-based learning approach [10] to
help students learn and practice core CPP concepts through game-
play.

In this paper, we present Parallel1, an educational game designed
specifically to teach CPP core concepts. While a few games related
to parallel programming exist, ours is the first educational game
to focus on this important CS subject that is evaluated through
empirical data. We report results from a 10-week user study (n 25)
where the game replaced supplemental material for an undergraduate
CS course on CPP. Overall, our results show that students (1) made
connections between the gameplay and CPP concepts, (2) enjoyed
the visual metaphors and gameplay of Parallel, and (3) liked having
the game as an alternative educational tool.

The cognitive challenges to learn and master CPP motivated us to
understand the design space for existing educational programming
games further and identify areas that may be particularly suitable for
CPP. Our analysis contributes to the programming game literature

1Game Release: https://github.com/santiontanon/Parallel

https://doi.org/10.1145/3337722.3337749
https://doi.org/10.1145/3337722.3337749
https://doi.org/10.1145/3337722.3337749
https://github.com/santiontanon/Parallel

FDG ’19, August 26–30, 2019, San Luis Obispo, CA, USA Zhu, et al.

by proposing a new framework of the design space based on how
the player authors the algorithms and how the latter are executed in
the game. Parallel offers a case study of how to connect gameplay
with programming concepts in a less explored area of the design
space, where algorithms are both authored and executed in what
we call the game space. This paper shares how our game design,
notably though core mechanics and dynamics, maps to CPP concepts,
and problem-solving challenges. Our design outcome can offer an
example for researchers and designers interested in game-based
educational interventions for CPP and procedural literacy in general.

In the remainder of this paper, we first summarize existing related
work on programming games. We then propose our framework on
the design space of representing the algorithmic processes in pro-
gramming games. After that, we describe the design of Parallel,
focusing on how the gameplay connects to CPP concepts. We then
report our evaluation methodology and experimental results. The
paper closes with conclusions and future directions.

2 BACKGROUND
A significant amount of literature exists at the intersection of games
and learning the skills of algorithmic thinking. Following the tradi-
tion of Scratch [26] and ALICE [16], many modern online learning
environments such as code.org and the Khan Academy motivate
novice programmers to learn through creating their own game-like
projects. As games become an accepted media for education and
training [10, 24, 25, 27], growing evidence shows that well-designed
educational games not only sustain students’ motivation for learning
to program better than their traditional counterparts, but also enhance
the learning outcome [5, 7, 13, 22, 25].

Recent public initiatives such as CS for all and Hour of Code
have fueled a surge of interest in learning programming. As a re-
sult, many interesting programming games were created recently.
Salient examples include, but are not limited to, Cargo Bot, Check
iO, Code Combat, CodeSpells, Human Resource Machine, Light Bot,
RoboCode, SpaceChem and Manufactoria. These games cut across
different programming language abstractions (visual blocks, textual
blocks and specific programming languages such as Java), different
game genres (puzzle games, adventure games, and sandbox games),
and different types of programming competency (comprehension,
writing, and debugging) [12, 28].

However, the majority of these educational programming games
are for sequential programming and mainly target the introductory
level [12, 23]. While they have shown success in making sequential
programming more engaging to novice programmers, these games
cannot be easily adapted to cover CPP concepts because the different
nature of CPP paradigm and because CPP students have typically
mastered the basics of programming and therefore need different
types of scaffolding.

Two current approaches to teaching CPP with computer games
exist. First, educators and researchers have used existing games that
happen to have related elements to teach CPP concepts [1, 18, 19].
For example, Marmorstein [19] employs an existing game called
OpenTTD, an open source implementation of Transport Tycoon
Deluxe. They use the train networks in the game to illustrate to stu-
dents how the synchronization concepts in CPP such as semaphores
work. Although this is a helpful approach, these games were not

specifically designed to teach CPP. As a result, they do not have all
the essential core concepts and sometimes contains information that
is at best inconsistent with CPP concepts.

A second approach is to design programming games for CPP
concepts. Existing examples include Parallel Bots, Parallel Blobs,
SpaceChem, Parapple and Deadlock Empire. Most of these games,
however, do not fully capture all the key parallel programming
concepts. For example, Parallel Bots and Parallel Blobs [14] are
deterministic and therefore do not cover the core CPP concept of
non-determinism. SpaceChem does not contain non-determinism
and only supports two threads, greatly reducing the complexity of
the problem space. Finally, while Parapple is non-deterministic, it
does not cover basic synchronization concepts such as semaphores
or critical sections. Due to the missing core concepts and the limited
complexity, the games mentioned above at their current state cannot
adequately represent real challenges in CPP and thus train players
the necessary problem-solving skills. Parallel is amongst the first
tempts to fill in this gap.

An interesting well-designed exception is Deadlock Empire, where
rather than programming, the player plays the role of the “sched-
uler”, trying to find an execution order of two threads which causes
execution issues. Through this design, the game captures most CPP
concepts accurately. Although it only supports two to three threads,
the gameplay of Deadlock Empire can be directly transferred to
actual parallel programming. Finally, none of these games have been
formally evaluated via user studies.

3 REPRESENTATION OF ALGORITHMIC
PROCESSES

As programming games for CPP is a relatively under-explored area,
we look at the design space for existing programming games for
useful patterns and identify potential gaps. In this paper, we focus on
a critical design question for all programming games — how does
the act of programming intersect with the game world.

We propose to analyze the design space for programming games
based on whether the authoring of the program is separate from its
execution in the game. We use the term “game space” to describe
the ludic world where the game exists, typically in the form of a 2D
or 3D graphic world where the player character(s) live. For instance,
in Light Bot, the game space is where the robot player character
traverses the grid-based terrain (left side of the Light Bot screenshot
in Fig. 1). We use the term “algorithm space” to describe the space
where the algorithms are specified (usually textually). In Light Bot,
the algorithm space is where the players arrange the arrows to control
the robot (right side of the Light Bot screenshot in Fig. 1).

Using whether the authoring and the execution of the program
happens in algorithm or game space, we chart existing programming
games in Fig. 1. We noticed that in most programming games, the
player programs in one space and sees its execution in another.
The overwhelming majority of games ask the user to program in
the algorithm space and then see the execution in the game space.
Notice in the example of Light Bot that even though the program
and algorithm spaces are placed next to each other in the screen,
they each operate a separate conceptual space. Similar to the idea of
program visualization [20], the game space, in this case, is used only
to display the run-time execution of the program, not the program

Programming in Game Space FDG ’19, August 26–30, 2019, San Luis Obispo, CA, USA

Authoring in
Algorithm Space

Authoring in
Game Space

Ex
ec

ut
io

n
in

Al

go
rit

hm
 S

pa
ce

Ex
ec

ut
io

n
in

G

am
e

Sp
ac

e

Deadlock Empire

SpaceChem
Manufactoria
Parallel

Cargo-Bot
Code Combat
Code spells
Human Resource Machine
Light Bot
Parallel Bots
Parallel Blobs
Parapple
Robocode

Light Bot

Space Chem

Manufactoria

Deadlock Empire

Game Space Algorithm Space

Al
go

rit
hm

 S
pa

ce

G
am

e
Sp

ac
e

G
am

e
Sp

ac
e

Figure 1: Classification of programming games based on the authoring and execution spaces. Games in yellow focus on sequential
programming, and games in green focus on parallel or concurrent programming. We also show screenshots of how the authoring and
execution spaces look in the games.

itself. By contrast, in games such as Manufactoria where both the
authoring and execution of the program happens in the same (game)
space, the game space itself is the program.

To provide design flexibility, we separate where the player codes
and where the code is executed. In games using this design, unlike
Manufactoria, the complexity of what programs can be authored is
not bounded by the game environment. Also, if the authoring is in
textual format, there is higher transferability to actual programming.
However, this design also imposes additional mental challenges for
learners. Identified in the software visualization community as the
“missing link” problem, when the source code and visualization take
place separately, it is difficult for the programmer to directly trace
an error that occurred in the visualization to specific locations in
the source code [11]. Similar challenges may apply to programming
games.

Given the complexity of CPP problems, we believe that overlap-
ping its algorithm space and game space may be more beneficial
for learning as players do not need to switch between the two areas
while they author the program and debug. While it is possible to
design a game in the algorithm space (e.g., Deadlock Empire), we
decided the game space affords more of the benefits of game-based
learning and offers an interesting design challenge. Therefore, we
designed Parallel by having both authoring and execution in game
space.

4 DESIGNING PARALLEL
Parallel (Fig. 2) is a single player 2D puzzle game designed to teach
concurrent and parallel programming core concepts, especially non-
determinism, synchronization, and efficiency. Our target audience is
CS undergraduate students who are interested in basic concepts in
CPP. In each level, a player places semaphores and buttons to direct
arrows, which carry packages and move along pre-defined tracks,
to the designated delivery points. In essence, the player designs
a synchronization mechanism to coordinate threads executing in

Figure 2: A screen shot of Parallel, in a level with four arrows
(four threads) representing the concepts of race condition and of
message passing (represented by what we call exchange points).

parallel. Once the player successfully delivers all required packages,
she wins and moves to the next level. Parallel currently has 18
hand-authored levels, with increasing difficulty. The game has a
procedural content generation component that can automatically
generate more levels [29], but this feature is not the focus of this
paper and is not included in this evaluation. Parallel can be used
as complementary material in a regular course curriculum or as an
informal learning game. The problem space that Parallel covers focus
on synchronization problems with a fixed number of threads, this
includes most key concepts in CPP: mutual exclusion and critical
sections, deadlocks, race conditions, starvation and semaphores, and
can illustrate Atomicity-Violation Bugs, Order-Violation Bugs, and
Deadlock Bugs[4]. Moreover, the game also supports some concepts
of efficiency and parallel speed-up.

For our design, we wanted the game to be 1) internally consistent
among the gameplay elements (playability), 2) externally consistent

FDG ’19, August 26–30, 2019, San Luis Obispo, CA, USA Zhu, et al.

Game Element CPP Concept
Configuration of
tracks

Program

Arrows Threads of execution, a.k.a., threads
Packages Resources
Semaphores The “wait” operation of Semaphores
Buttons The “Signal” operation of Semaphores
Diverters & direc-
tional switches

Conditional statements

Exchange points Message passing
Table 1: The mapping between the game elements to CPP con-
cepts.

with CPP (transferability), and 3) expressive enough to represent
complex CPP problems such as the Smokers Problem and the Dining
Philosophers Problem [9] (expressive depth). The rest of the section
focuses on how we achieve transferability and expressive depth
through the game mechanics building blocks and scale up to game
dynamics.

4.1 CPP Concepts as Game Mechanics
Table 1 summarizes how the game elements in Parallel are mapped
to CPP concepts. In our prior work, we reported the importance of
choosing the visual metaphors consistent with the learning content
[21]. For instance, we found that abstract arrows represent computer
threads better than real-world physical entities, like trains, because
the latter create expectations (e.g., trains crash when colliding) that
do not map to how threads behave.

Arrows represent threads. Arrows travel on the tracks and, un-
less interrupted by the player through semaphores and buttons, take
a predetermined path. All arrows can carry any number of packages.
The arrows exhibit non-deterministic behavior by traveling at ran-
domized speeds, varying at randomized intervals. Because arrows
can overtake one another, it creates different scenarios every time
the player runs the level simulation.

Buttons represent signals. A button is triggered when an arrow
passes through it. When the player links a button to a semaphore
and an arrow triggers the button, it will signal the linked semaphore
to switch its state. Semaphores represent waits. A semaphore is
either “locked” or “unlocked”. An unlocked semaphore lets one
arrow pass and then switches its state to locked. A locked semaphore
stops all arrows and can only unlock at the moment when a linked
button is triggered. When the player places a semaphore, she needs
to decide what initial state will solve the puzzle at hand.

Packages represent resources. When an arrow passes over a
package, it will automatically be picked up and delivered when
passing over a delivery point. To increase the complexity of CPP
problems the game can express, Parallel contains three different
types of packages to represent different types of shared resources
in parallel programming. For instance, a limited package represents
shared resources between different arrows (threads) that are con-
sumed once used and can only re-spawn when the previous one was
delivered for a limited number of times.

Directional Switches and Diverters represent conditional state-
ments. Both elements direct arrows at intersections of tracks to dif-
ferent directions. Similar to a semaphore, a directional switch can
link to a button. When an arrow triggers the button the switch will
cycle clockwise to the next available direction. By contrast, the di-
verters direct arrows based on the type of packages they carry. Thus,
directional switches represent conditional (if-then-else) statements
depending on program variables (which can change via buttons),
while directional switches represent conditions depending on the
shared resources the threads are using (represented by the arrows
carrying packages).

Exchange Points represent Message Passing. Exchange points
are placed on the track and only appear in linked pairs. When an
arrow arrives at an exchange point, it waits until another arrow
arrives at the other linked exchange point. Then they swap packages
if they are carrying any. This exchange is used to model problems
that require message passing.

We designed the above mechanics of Parallel with the goal
that the interactions between them will create situations equiva-
lent to those in CPP problem solving, namely how to deal with
non-determinism and synchronization while exploiting parallelism
for efficiency. In particular, our design can represent fundamental
parallel programming concepts including efficiency, race conditions,
deadlocks, and message passing as identified in the CPP literature
[6].

4.2 Practicing CPP Problem Solving through
Game Dynamics

After developing how basic CPP elements are mapped to game
mechanics, we can focus on how these basic rules give rise to
game dynamics representing three fundamental CPP concepts: non-
determinism, synchronization, and efficiency.

4.2.1 Non-determinism. As mentioned before, non-determinism
is an essential feature of concurrent and parallel programming, as
it is not possible to predict the order in which different threads will
execute the different statements of a program. The key mechanics to
drive non-determinism in Parallel are the random speeds of each ar-
row, which can vary at each simulation. The speed variation ensures
solutions that work once may not succeed in the next run (as is true
in actual parallel programming). The player can test her solution
with the “test” function (bottom button in Fig. 2), which will run
her solution with a different configuration of the arrow speeds each
time. When she feels ready, the player can “submit” her solution.
In this case, the game will systematically check all configurations
of the arrow speeds (corresponding to all possible thread execution
schedules) via a model checker. If one configuration exists in which
the solution will fail, the game will show the simulation with it. The
player will need to revise her solution and resubmit.

4.2.2 Synchronization. Concurrent and parallel programming in-
volves addressing a set of synchronization challenges that do not
arise in sequential programming such as deadlocks, race conditions,
or preventing starvation. All of those concepts have their equivalent
in Parallel. For example, the left-hand side diagram in Fig. 3 shows
an example of a race condition, where if arrow 1 arrives at the pickup
point a before arrow 2 delivers the package to b, the execution will

Programming in Game Space FDG ’19, August 26–30, 2019, San Luis Obispo, CA, USA

1

Race Condition: If Arrow 1
arrives to (a) before Arrow 2
arrives to (b), execution will fail.

2

a
b

Critical Section: Only
one arrow at a time
should be allowed in it.

Figure 3: Illustration of two CPP concepts in Parallel.

fail, since the package would not have yet respawned. In conven-
tional CPP, these problems are usually addressed by identifying the
critical section (the portion of code that only one thread can be
executing at a time), and ensuring that not two threads get there.
The same has to be done in Parallel. The right-hand side diagram
in Fig 3 shows the critical section of this level: if two arrows get in
there at the same time, correct execution cannot be ensured. So, the
player needs to place semaphores and buttons to prevent that from
happening, thus addressing the race condition. Similarly, starvation,
deadlock, and other CPP concepts have their visual analogies in
Parallel.

It is worth noting that although we make sure that the design of
Parallel can express these CPP challenges, we purposefully do not
use any CPP terminology to describe them. The goal is to see if
players can make the connections from gameplay.

4.2.3 Efficiency. Like in CPP, the simplest way to deal with non-
determinism and synchronize threads is to block arrows in the game
so that they move one at a time in deterministic ways. In other
words, the problem becomes sequential. However, this approach
is undesirable because it forgoes the benefits of CPP — running
multiple threads in parallel can boost efficiency. We found that this
trade-off lends itself well to trade-offs often encountered in strategy
puzzles. Based on user feedback, we implemented a star system
into the game, which scores the solutions provided by students from
one to three stars, based on their efficiency. The game calculates the
estimated number of simulation steps needed to complete a given
task (given a predefined solution) and compares the player’s solution
to it. Only an efficient and correct solution can earn the player three
stars.

In summary, we presented our design rationale for Parallel based
on our three design criteria. For playability, we designed the set of
rules to be internally consistent and provided a clear set of winning
conditions to the players. For transferability, we explicitly mapped
our core mechanics and the resulting game dynamics to a core set of
CPP concepts identified by CPP experts [6]. For expressive depth,
our design can represent the equivalent of well-known CPP difficult
problems. Fig. 4 illustrates what the classic Dining Philosophers
with three philosophers (left), and Smokers problem with three smok-
ers (right) look like in the design space of Parallel. The solution to

these problems in Parallel is equivalent to the solution described in
widely used textbooks [9]. For example, the solution of the Smokers
problem involves a synchronizing thread (represented in the game
by the separated circuit on the top-right part of the level). Its role is
to synchronize the other three threads (the smokers).

5 EVALUATION THROUGH CLASS
IMPLEMENTATION

The following sections report our formative evaluation of Parallel.
The guiding research question for this study is whether students can
make connections between the gameplay in Parallel and the CPP
core concepts they were taught in class, a necessary condition for
the game to have educational benefits. We are also interested in the
general acceptability of the game by the students. Notice that we do
not formally evaluate the knowledge gain from playing Parallel in
this study.

We used mixed methods design convergent design [8] to see
students’ perceptions of the game via rated scores and to understand
why students felt certain ways about the game and its programming
and visual metaphors.

We used a sample of convenience of an upper-class CS under-
graduate course entitled “Concurrent Programming,” taught by one
of the co-authors at a major university. This 10-week elective course
consists of a total of 30 students. Those who chose to participate in
the study were asked to play specific levels of Parallel and complete
surveys as additional homework. The study consisted of five rounds
of assignments, each lasting about two weeks. The first round con-
sisted of tutorial levels of the gameplay and a demographic survey.
In the following four experimental rounds, participants were asked
to answer a pre-survey, play certain game levels (including both
mandatory and optional levels), and fill in a post-survey. In the finals
week of the course, the students were also asked to complete a course
post-survey and invited to participate in a focus group.

5.1 Surveys and Focus Group
These surveys were designed to measure students’ general under-
standing of the game and the CPP concepts involved. Specifically,
survey questions were administered in three styles. First, there were
multiple choice questions where students stated what particular CPP
concepts they spotted within the game levels they played (race con-
ditions, starvation, etc.). The second style included open-ended ques-
tions where students were able to explain in detail their responses
to the multiple choice questions as well as explain their likes and
dislike about different aspects of the game (e.g., game content or
user interface). The third style included giving students a picture of
a game level with a solution inserted and asking the student whether
or not the solution would succeed or fail, and their reasoning process.
An example of this type of question is seen in Fig. 5.

Surveys were given four times throughout the term in four prelim-
inary rounds to see if students perceptions had changed, as well as to
see what topics were most prevalent. These surveys were designed
to reveal students’ ability to connect the visualization of concurrent
and parallel programming in the game Parallel to actual program-
ming concepts. The surveys were also designed to understand what
students liked or disliked about the game.

FDG ’19, August 26–30, 2019, San Luis Obispo, CA, USA Zhu, et al.

Figure 4: Representation of the Dining Philosophers (left) and Smokers (right) classic parallel programming problems in Parallel.

Figure 5: Game Level Solution Survey Question.

In the focus group session, we asked students questions about their
overall impressions of the game, the game’s implementation in class,
and the user interface. We also asked students general questions
about how they learn CPP and what might help them in class or in
the game to learn CPP concepts. This line of questioning allowed
for the researchers to get a sense of what students need from this
game and what they need to learn in terms of concurrent and parallel
programming in general, and how the visualization and gamification
of CPP concepts might fit into this.

5.2 Analysis
Data analysis took the form of descriptive statistics for the quanti-
tative survey questions, and open coding for the qualitative survey
questions as well as the focus group. We used two rounds of open

coding leading to the emergence of themes. The first round of open
coding involved descriptive coding where open-ended survey ques-
tions were read over, and researchers made a note of any particular
phrases that stood out as being instances where students were mak-
ing connections between the game concepts to actual CPP concepts.
The next step of this coding process involved visiting the transcripts
yet again and grouping these codes based on different themes that
emerged. This process of coding repeated for the focus group. Two
examples of the themes and the codebook used is found in Table 2.

6 RESULTS
We recruited 25 undergraduate students from the course to volunteer
in the study. Out of them, 2 are females, 22 males, and 1 non-binary,
with an average age of 21.56. A subset of four students, all male,
volunteered to attend the focus group at the end of the study. This
section summarizes the results from the study with the following
main conclusions:

(1) Students were able to make connections between the CPP
concepts and Parallel’s representation of them through game
mechanics and dynamics.

(2) A majority of students truly liked the abstract visual metaphor
and gameplay of Parallel.

(3) Students enjoyed having an abstract game as an alternative
teaching tool.

6.1 Survey Results
Two facets of student surveys showed that students were able to make
connections between the game and CPP concepts. First, students’
explanation of why a level (e.g., Fig. 5) would succeed or fail show
that they were making connections from the game to course concepts.
For example, one student stated a level would succeed because “each
critical zone looks like it is properly secured with semaphores”. As
stated above, we do not use CPP terminology such as critical sections
in the game or the surveys. The above answer illustrates that this
student was able to a) identify the representation of crucial sections
in Parallel and b) know the correct way to secure the critical section
in the abstraction, showing knowledge transfer between the game
and the CPP concepts. Another student stated that a level would

Programming in Game Space FDG ’19, August 26–30, 2019, San Luis Obispo, CA, USA

Theme Descriptive Code Example from Student Responses
Visualization Helped - Abstraction as enjoyable

- Comparison to other abstract games
“It gives a way to visualize race conditions as well as
other things like starvation.”

New Learning Methods - Change in teaching style
- Game as Something Different
- Another form of visualizing parallel problems
- Something other than the teacher
- Another way of learning
- Novelty

“It might help if instead of those paper assignments there
would be actually like in class assignments”
“Easier, lighter way to understand key concepts”

Table 2: Example of relevant themes from codebook

Accuracy Connections
Round 1 61.11% 88.2%
Round 2 70.59% 71.0%
Round 3 74.56% 88.8%
Round 4 68.75% 92.3&

Table 3: Average student accuracy on survey questions where
students were shown a solution and asked whether it would suc-
ceed or fail, and the percentage of students that saw a connec-
tion between the game and the course content.

not succeed because “each receiver was protected by locks properly.
There’s still potential starvation, if all three processes wait between
splitter and splitter changing signal and pass splitter together”, again
showing that the student was able to understand what starvation,
a common problem in CPP, would look like in the environment
of the game. Additionally, students increasingly got these answers
correct over time, shown in Table 3 (accuracy column). The only
exception of the increasing trend of accuracy occurred during finals
week, where students reported they did not have time to complete
the surveys.

The second evidence of students’ ability to make connections
was through the questions about how a particular level connected to
the CPP content. In these responses, students stated things like “I
think the best connection would be to mutual exclusion. Only one
arrow was doing the cube switch and drop off at a time”, and “It
[the level] dealt with managing critical sections between 3 threads
and their dependency on communication with a 4th thread”. In both
instances, students were showing that they were able to identify CPP
concepts within the game. Specifically, when asked the question of
how they think that the levels played in Parallel connect with what
they have learned in class thus far, a large percentage of students
reported seeing connections (Table 3, connections column). For
example, in the last round, 92.3% of students reported seeing a
connection (13 students answered this question, and only 1 reported
not seeing a connection). Out of the 12 that saw a connection, the
most common answers were: 5 mentioned it was connected to the
idea of semaphores and monitors, 2 mentioned synchronization
and 2 mentioned it was a good visual representation of concurrent
processes.

When we asked students about what they liked most about the
game, a consistent answer was the fact that they liked the visual
gameplay. In three of the four experimental rounds, the second most

frequent code seen was students mentioning that they enjoyed the
visualization aspect of the game saying things like: “It helps visualize
the boring concepts as an animated game which is cool”, and “[the
game] made it easier to picture the concepts learned in class in a
practical manner”. In both instances, students mentioned that they
liked the game and also stated how it compared to class, showing that
students enjoyed the visual gameplay as a way to reinforce topics
learned in class. For example, in the last round of post-surveys,
the answers of 11 out of the 15 students that responded contained
the code “a fun way to understand parallel concepts”, 3 of which
mentioned it was entertaining, 3 of them saying it was “challenging
in a good way”, and 5 mentioned it was an easier way to understand
concepts. During the first round of testing, when asked about likes
and dislikes, the answer of 7 out of the 17 students that responded,
contained the code “helped visualize concepts” with comments such
as “it gives a way to visualize race conditions” or “I feel like it gives
you a good visualization of what’s going on versus just talking about
these sorts of concepts”.

Unfortunately, some of our results were affected by some user
interface issues. 8 out of 15 students in the fourth round mentioning
a bug in the game’s ability to check whether the player’s solution
works or a bug with zooming in one of the levels (all of these bugs
are fixed).

6.2 Focus Group Results
It was quite clear through the focus groups that students enjoyed the
gameplay and that the visual idea of “coding in game space”, and
the resulting game dynamics filled a need for a new way to learn
CPP concepts and reinforce the topics covered in class. Students
stated that they liked the abstractness of the game, and one student
even stated that this game environment got him excited:

“To me it was a little bit addicting if you really kind of
solve the problem it felt like if you can’t get it I want
to just like try and figure it out, go to the next one, next
one, yeah. I would- if you make a mobile game for it,
it might just take off.”

Besides mentioning that they liked the game, students also made
it clear that in order to understand CPP better, they wanted new
tools for learning, not just the typical in-class lectures and handouts,
stating, “It might help if instead of those paper assignments there
would be actually like [this game] in class assignments”. “New
Learning Methods” was a code that showed up frequently within
the focus group (see Table 4), showing up more than any other code,

FDG ’19, August 26–30, 2019, San Luis Obispo, CA, USA Zhu, et al.

Themes Occurances Example
Abstraction 3 “in programming itself you need to design like paths for a threat to take a

path for a problem to execute and then in the game we’re already given
those paths and we kind of didn’t have to think through them and think
how they can be interleaved like they can be sometimes interleaved in a
different way or like change somehow and I actually program in the game
it was kind of you’re pretty much given something that you haven’t really
thought through”

Learning Foundations 3 “For me it was pretty much um- in the lectures, understanding the con-
ceptual part of how things work but umm- but besides that pretty much
experiential as well so actually developing code.” (answering about what
was the part where they learned more from in the course)

Implementation Importance 3 “You could have done more user testing.”
Interaction between Game and Class 2 “Even if the professor just used it during his explanation that will just build

like a little bridge between code, even if he just used it during like the
lecture.”

New Learning Methods/Way of Teaching 15 “Because if you explain maybe a certain like semaphores, semaphores are
simple. But maybe something more complex using a premade game and
you show that oh this is how it works then I’m more likely to think of it as
programming problem.”

Strategy-Coordination/Organization 1 “And somehow I have to coordinate the sharing of variables so that there
aren’t any race conditions, and yet the problem is solved.”

Strategy-Practice 5 “But I did feel a little bit that if I did more of them, it would help me build
some better understanding of how to like approach these without really
thinking like it will come in my mind like muscle memory it would help
me build muscle memory ”

Transfer 2 “Because if you explain maybe a certain like semaphores, semaphores are
simple. But maybe something more complex using a premade game and
you show that oh this is how it works then I’m more likely to think of it as
programming problem.”

Table 4: Codes identified during the focus group, with their frequencies and examples from the transcripts.

and showing that students were looking for another method in which
to learn CPP concepts.

Students went on to state that Parallel helped to fill this need for
a new way of learning, saying that using the game was an “Easier,
lighter way to understand key concepts”. On the same lines, another
student stated:

“But I did feel a little bit that if I did more of them,
it would help me build some better understanding of
how to like approach these without really thinking like
it will come in my mind like muscle memory it would
help me build muscle memory and in [Parallel] I did
feel that I don’t know why”

Again, this shows that the student was able to see connections be-
tween the game and concurrent programming concepts, enough so
that it would allow for them to build muscle memory for different
concurrent programming problems. This connection is another ex-
ample of common code (“strategy-practice”), appearing 5 times in
the focus group, as shown in Table 4.

Some students, however, mentioned that tighter integration of the
game with the class lectures would have helped them further make
connections between the game and CPP concepts. For example, the
sample comment for the “interactions between game and class” code

in Table 4, indicates that the student would have liked to see the
professor explicitly use game visualizations during the lectures, to
help them make the connections.

Other specific themes and their frequencies that we identified
when coding the transcriptions of the focus group with examples
shown in Table 4 (we do not include all of the codes for readability).
From this table, we can see that the most common codes corre-
sponded to the game are a new way of learning or teaching.

7 DISCUSSION
Overall, through these results, it is clear that students liked Parallel’s
CPP programming and visual metaphors, and that students were in,
fact, able to see the connection between the problems they solved in
the game and the typical problems they were learning in class. These
results are particularly positive since the idea of “programming in
game space” and the abstract choice of the visual metaphor makes
the connections less direct than if programming was done directly
in “algorithm space” (see Fig. 1). There was a potential danger of
students not being able to connect what they saw to conventional
programming concepts easily. But our results show that this “danger”
did not materialize and that the majority of students were able to

Programming in Game Space FDG ’19, August 26–30, 2019, San Luis Obispo, CA, USA

make connections between CPP concepts and the corresponding
game elements.

We want to highlight several aspects of the design of Parallel
which we believe are generalizable to other programming games,
and also we believe significantly contributed to the successful design
of the game. Three of them relate to the three basic design principles
we set out to achieve, and the fourth relates to the distinction between
algorithm and game space:

• Playability: all the elements in the game are internally con-
sistent. For example, if an element fades to a darker shade of
color when deactivating, then, any other element that fades to
a darker share of color should also indicate it is deactivating.
This change is especially important in programming games,
given the inherent complexity of the topic.

• Transferability: inferences based on reasoning about game
entities should have a direct correspondence to CPP concepts.
We discarded many initial prototypes which were visually
more intuitive, but that let students make the wrong infer-
ences. For example, our first prototype used cars and roads
rather than arrows and paths. This concept made students ask
about things like “overtaking” or “lanes”, which did not make
sense in CPP. Thus, we believe it is important for program-
ming games in general to choose visual metaphors that help
students thinking about the right concepts. We paid particular
attention to make sure every element in the game behaves as
close as possible to the corresponding CPP concept it was
trying to model.

• Expressive Depth: when considering initial design candidates
that satisfied both the above criteria, a final test was to try
to represent classical concurrency problems (e.g., Dining
Philosophers) with each of the design candidates to assess if
they were expressive enough to capture these problems, and
also to see if their representations would be recognizable.

• Missing Link: finally, we believe that the framework put for-
ward in Fig. 1 makes a significant distinction between differ-
ent types of programming games: namely whether authoring
and execution occur on the same space (algorithm space or
game space) or not. While having authoring and execution
occur on different spaces significantly simplifies game design
(as the gameplay does not constraint the authoring that the
game supports), this separation is the source of the “missing
link” problem. Having authoring and execution in the same
space (as other games, like Deadlock Empire or Manufactoria
do), makes linking execution errors with errors in the “code”
very direct.

8 CONCLUSIONS AND FUTURE WORK
This paper presented Parallel, one of the first educational program-
ming games that cover all core concurrent and parallel programming
(CPP) concepts and can scale up its complexity to represent well-
known CPP problems used in textbooks. We also presented a new
framework to categorize the design space for programming games.
We believe that our design, aimed for playability, transferability,
and expressive depth, and our framework can be useful to other
researchers and designers interested in designing new applications
to improve CPP education.

In our user study in an undergraduate CS course, our results
show that the majority of students made connections between the
game concepts and the CPP concepts learned in class. Students
reported it helped them to better understand concurrent and parallel
programming topics. Additionally, the majority of students enjoyed
the abstract visual metaphor and felt the gameplay was engaging
and fun. Finally, students expressed that the game filled a need for a
new way to learn these concepts rather than traditional lectures or
worksheets.

There are several limitations to the study. First, our sample size is
relatively small. Further studies with a larger number of participants
are needed to confirm our findings. Second, the sample of the focus
group may contain self-selection bias due to the study occurring
during finals week. Students with strong opinions of the game were
more likely to attend.

For future directions, we plan to integrate different aspects of the
project, such as player modeling [15] and procedural game level
generation [30]. We also plan to further analyze students’ game-
play traces in order to understand how they solve problems in CPP
problems and how to facilitate further learning using a game-based
approach.

9 ACKNOWLEDGEMENTS
This project is partially supported by NSF grant #1523116. The
authors would like to thank all past and current members of the
project for their contribution, especially Radha Patole.

REFERENCES
[1] Ashish Amresh and Ryan Anderson. 2014. Parallel Programming Using Games:

A Hands-On Approach. AK Peters, Ltd.
[2] Michal Armoni and Mordechai Ben-Ari. 2009. The concept of nondeterminism:

its development and implications for teaching. Science & Education 18, 8 (2009),
1005–1030.

[3] Michal Armoni and Judith Gal-Ezer. 2006. Introducing nondeterminism. The
Journal of Computers in Mathematics and Science Teaching 25, 4 (2006), 325.

[4] Remzi H Arpaci-Dusseau and Andrea C Arpaci-Dusseau. 2015. Operating sys-
tems: Three easy pieces. Vol. 1. Arpaci-Dusseau Books.

[5] Tiffany Barnes, Eve Powell, Amanda Chaffin, and Heather Lipford. 2008.
Game2Learn: improving the motivation of CS1 students. In Proceedings of the
3rd international conference on Game development in computer science education.
ACM, 1–5.

[6] Richard Brown, Elizabeth Shoop, Joel Adams, Curtis Clifton, Mark Gardner,
Michael Haupt, and Peter Hinsbeeck. 2010. Strategies for preparing computer
science students for the multicore world. In Proceedings of the 2010 ITiCSE
working group reports. ACM, 97–115.

[7] Daniel C Cliburn. 2006. The effectiveness of games as assignments in an intro-
ductory programming course. In Frontiers in Education Conference, 36th Annual.
IEEE, 6–10.

[8] John W Creswell. 2014. Educational research: Planning, conducting, and evalu-
ating quantitative. Upper Saddle River, NJ: Prentice Hall.

[9] Allen Downey. 2009. The little book of semaphores. CreateSpace Independent
Publishing Platform.

[10] James Paul Gee. 2003. What video games have to teach us about learning and
literacy. Computers in Entertainment (CIE) 1, 1 (2003), 20–20.

[11] Luis M Gómez-Henríquez. 2001. Software visualization: An overview. (2001).
[12] Casper Harteveld, Gillian Smith, Gail Carmichael, Elisabeth Gee, and Carolee

Stewart-Gardiner. 2014. A design-focused analysis of games teaching computer
science. Proceedings of Games+ Learning+ Society 10 (2014).

[13] Roslina Ibrahim, Rasimah Che Mohd Yusoff, Hasiah Mohamed Omar, and Azizah
Jaafar. 2010. Students perceptions of using educational games to learn introductory
programming. Computer and Information Science 4, 1 (2010), 205.

[14] Cornelia P Inggs, Taun Gadd, and Justin Giffard. 2017. Learning Concurrency
Concepts while Playing Games.. In CSEDU (1). 597–602.

[15] Pavan Kantharaju, Katelyn Alderfer, Jichen Zhu, Bruce Char, Brian Smith, and
Santiago Ontanón. 2018. Tracing Player Knowledge in a Parallel Programming
Educational Game. In Fourteenth Artificial Intelligence and Interactive Digital
Entertainment Conference.

FDG ’19, August 26–30, 2019, San Luis Obispo, CA, USA Zhu, et al.

[16] Caitlin Kelleher, Randy Pausch, and Sara Kiesler. 2007. Storytelling alice moti-
vates middle school girls to learn computer programming. In Proceedings of the
SIGCHI conference on Human factors in computing systems. ACM, 1455–1464.

[17] Y Ben-David Kolikant. 2004. Learning concurrency as an entry point to the
community of computer science practitioners. JOURNAL OF COMPUTERS IN
MATHEMATICS AND SCIENCE TEACHING. 23, 1 (2004), 21–46.

[18] R. F. Maia and F. R. Graeml. 2015. Playing and learning with gamification: An
in-class concurrent and distributed programming activity. In 2015 IEEE Frontiers
in Education Conference (FIE). 1–6.

[19] Robert Marmorstein. 2015. Teaching semaphores using... semaphores. Journal of
Computing Sciences in Colleges 30, 3 (2015), 117–125.

[20] Brad A Myers. 1990. Taxonomies of visual programming and program visualiza-
tion. Journal of Visual Languages & Computing 1, 1 (1990), 97–123.

[21] Santiago Ontañón, Jichen Zhu, Brian K Smith, Bruce Char, Evan Freed, Anushay
Furqan, Michael Howard, Anna Nguyen, Justin Patterson, and Josep Valls-Vargas.
2017. c. In Proceedings of the 2017 CHI Conference Extended Abstracts on
Human Factors in Computing Systems. ACM, 2818–2824.

[22] Marina Papastergiou. 2009. Digital game-based learning in high school computer
science education: Impact on educational effectiveness and student motivation.
Computers & Education 52, 1 (2009), 1–12.

[23] Michele Pirovano and Pier Luca Lanzi. 2014. Fuzzy Tactics: A scripting game
that leverages fuzzy logic as an engaging game mechanic. Expert Systems with
Applications 41, 13 (2014), 6029–6038.

[24] Marc Prensky. 2003. Digital game-based learning. Computers in Entertainment
(CIE) 1, 1 (2003), 21–21.

[25] Josephine M Randel, Barbara A Morris, C Douglas Wetzel, and Betty V Whitehill.
1992. The effectiveness of games for educational purposes: A review of recent
research. Simulation & gaming 23, 3 (1992), 261–276.

[26] Mitchel Resnick, John Maloney, Andrés Monroy-Hernández, Natalie Rusk, Evelyn
Eastmond, Karen Brennan, Amon Millner, Eric Rosenbaum, Jay Silver, Brian
Silverman, and others. 2009. Scratch: programming for all. Commun. ACM 52,
11 (2009), 60–67.

[27] David Williamson Shaffer. 2006. How computer games help children learn.
Macmillan.

[28] Adilson Vahldick, António José Mendes, and Maria José Marcelino. 2014. A
review of games designed to improve introductory computer programming com-
petencies. In 2014 IEEE Frontiers in Education Conference (FIE) Proceedings.
IEEE, 1–7.

[29] Josep Valls-Vargas, Santiago Ontanón, and Jichen Zhu. 2015. Exploring Player
Trace Segmentation for Dynamic Play Style Prediction. In Eleventh Artificial
Intelligence and Interactive Digital Entertainment Conference (AIIDE 2015).
AAThe AAAI PressAI.

[30] Josep Valls-Vargas, Jichen Zhu, and Santiago Ontañón. 2017. Graph grammar-
based controllable generation of puzzles for a learning game about parallel pro-
gramming. In Proceedings of the 12th International Conference on the Founda-
tions of Digital Games. ACM, 7.

	Abstract
	1 Introduction
	2 Background
	3 Representation of Algorithmic Processes
	4 Designing Parallel
	4.1 CPP Concepts as Game Mechanics
	4.2 Practicing CPP Problem Solving through Game Dynamics

	5 Evaluation through Class Implementation
	5.1 Surveys and Focus Group
	5.2 Analysis

	6 Results
	6.1 Survey Results
	6.2 Focus Group Results

	7 DISCUSSION
	8 Conclusions and Future Work
	9 Acknowledgements
	References

