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Shall I Compare Thee to Another Story?—An
Empirical Study of Analogy-Based Story Generation

Jichen Zhu and Santiago Ontaiién

Abstract—Despite their use in traditional storytelling, analogy-
based narrative devices have not been sufficiently explored in com-
putational narrative. In this paper, we present our analogy-based
story generation (ASG) approach in the Riu system, focusing on
analogical retrieval and projection. We report on an empirical user
evaluation about Riu’s capability to retrieve and generate short
noninteractive stories using the story analogies through mapping
(SAM) algorithm. This work provides the foundation for explo-
ration of ASG in more complex and interactive computational nar-
rative works.

Index Terms—Computational analogy, empirical evaluation,
force dynamics (FD), story generation.

I. INTRODUCTION

ARRATIVE, as it evolves with technological devel-

opments, constantly reinvents itself to better capture
individuals’ experience and new social orders. Over the past
decades, an increasing number of computational narrative
artifacts have been developed in various areas, such as en-
tertainment (e.g., computer games), training and education
(scenario-based training simulation), or artistic expression
(electronic literature). Similar to the history of film and many
other traditional media, unleashing the full potential of com-
putational narrative requires a close collaboration between
technical innovation and expressive exploration. Among
others, developments in Al research provide new possibilities
for enhancing storytelling with user interaction, personaliza-
tion, procedurally generated content, etc. These elements help
to reshape the boundary and the poetics of computational
narrative, whether the resulting narrative closely remediates [1]
traditional forms of stories [2]-[5] or evolves into something
radically different [6], [7].

Story generation, one of the active research areas in com-
putational narrative, has made considerable progress in recent
decades, notably in planning-based approaches [8]-[10] and
multiagent simulation-based ones [11]. New algorithmic
improvements, often aided by narratology theories, have al-
lowed computer systems to produce increasingly complex
stories. Although there are several exceptions [12], [13],
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most computer-generated stories occupy a very similar space
in the expressive spectrum defined by traditional narrative.
Elsewhere, we have observed that different story generation
techniques have specific built-in narrative affordances and
constraints [14]. Stories generated using planning, for instance,
often embody a strong action-based, goal-driven aesthetic.
We believe that the long-term success of computational nar-
rative lies in whether it can communicate both the breadth
and depth of being-in-time of human experiences. Although
planning-based story generation is an important direction, the
further development of computational narrative as a mature
form of cultural expression calls for broadening its expressive
range by exploring alternative technical approaches.

In this paper, we present our work toward this goal in a rel-
atively under-explored area—analogy-based story generation
(ASQG). In traditional forms of narrative, metaphor, simile, free
association, parallel narrative, and other similarity-based narra-
tive devices are commonly used. For instance, metaphors (e.g.,
“Juliet is the sun”) and similes (e.g., “My love is like a red,
red rose,” or “Shall I compare thee to a summer’s day?”) fre-
quently appear in literature, especially in poetry. At a coarser
level of granularity, free association has been used, notably by
stream of consciousness writers such as Joyce and Woolf, as a
means of depicting characters’ trains of thought. In these works,
a character’s thoughts do not always follow the logical cause-
and-effect order; rather, they shift fluidly, from one topic to
another, with similar elements/traits as the bridge. At the plot
level, parallel narratives, sometimes called tandem narratives
[15] or double-scope stories [16], can be used to connect seem-
ingly separate stories through a common theme. For example, in
Guillermo del Toro’s film Pan s Labyrinth (2006), the narrative
shifts between the reality and the protagonist’s imaginary fan-
tasy world. The two highly contrasting worlds are intertwined
through similar events such as a near escape, although these
events were carried out by different characters in different set-
tings. In prose fiction, Haruki Murakami masterfully used a sim-
ilar technique in his novel Hard-Boiled Wonderland and the End
of the World [17].

In the above examples, similarity-based narrative devices
offer an alternative to the cause-and-effect-based narrative
world of actions and well-defined character goals. What is
foregrounded here are the characters’ rich inner worlds as well
as the authors’ subjectivity. In order to explore these narrative
possibilities, we need a set of computational tools capable of
establishing appropriate associations between different narra-
tive elements. In this paper, we explore and evaluate the use
of computational analogy, particularly with different types of
domain knowledge, for noninteractive short story snippets.
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The long-term goal of our research is to broaden the expres-
sive range of computational narrative by exploring different
story generation techniques. In this paper, we present our
approach for analogy-based story generation through our
interactive narrative system Riu, and particularly its ASG
components: memory retrieval and the story analogies through
mapping (SAM) [18] analogical projection algorithm, which
completes partially specified stories by analogy. As ASG is a
relatively new direction for computational narrative, the focus
of this paper is on developing and evaluating the technical
foundations necessary for our long-term goal. Specifically, we
focus on the story representation formalism as well as how
Riu utilizes analogy in its analogical retrieval and projection
processes. This paper extends our prior work by empirically
evaluating the major hypotheses of our system design and
the effectiveness of our system. Our user study confirms that:
1) the assessment of story similarity and analogical mappings
used in our system aligns with human readers’ perceptions
of them; 2) the force-dynamics-based story representation
contributes significantly to the performance of our system; and
3) the quality of the stories generated by our system is high. We
believe that the results presented in this paper provide us with
a solid foundation for further investigating narrative aesthetics
and user interactivity in ASG.

This paper is organized as follows. First, we provide a theo-
retical framework on computational analogy and the cognitive
semantic theory of force dynamics (FD), the basis of our story
representation. Then, we introduce Riu, focusing on the SAM
algorithm, with examples of generated stories. Next, we present
our user study and analyze the results. Finally, we compare Riu
with other related ASG systems.

II. THEORETICAL FRAMEWORK

This section presents the theoretical framework foundational
to our approach. Related ASG systems are discussed in relation
to our Riu system in Section V.

A. Computational Analogy and Structure Mapping

Drawn upon the human cognitive process of analogy making,
computational analogy operates by identifying similarities and
transferring knowledge between a source domain S and a target
domain 7. The intuitive assumption behind analogy is that if
two domains are similar in certain key aspects, they are likely to
be similar in other aspects. Given a target domain 7', this process
is composed of four stages [19]:

1) recognition of a candidate analogous source 5

2) elaboration of an analogical mapping and inferences be-
tween source domain .S and target domain 7T’;

3) evaluation of the mapping and inferences;

4) consolidation of the outcome for other contexts.

Existing systems that implement some or all of these stages
can be classified into three classes based on their architecture
[20]. Symbolic models (e.g., ANALOGY [21] and the struc-
ture-mapping engine (SME) [22]) heavily rely on concepts from
the “symbolic Al paradigm”: symbols, logics, planning, search,
means-ends analysis, etc. Connectionist models (e.g., ACME
[23], LISA [24], and CAB [25]), on the other hand, adopt the

connectionist framework of nodes, weights, spreading activa-
tions, etc. Finally, the hybrid models (e.g., COPYCAT [26],
TABLETOP [27], and LETTER-SPIRIT [28]) blend elements
from the previous two classes.

Of particular relevance here is the SME algorithm [22]. Its
cognitive foundation is Gentner’s structure-mapping theory
on the implicit biases and constraints by which humans in-
terpret analogy and similarity [29]. Built upon psychological
evidences, Gentner’s central idea is that human analogical
reasoning favors the relations between entities, rather than
their surface features. SME implements this view of analogical
reasoning as a structure-preserving process. Focusing exclu-
sively on the elaboration stage of analogy, SME receives two
domains as input, each represented as a series of entities and
relations, and outputs an analogical mapping of the entities
and relations between the domains. In Riu, we use SME as the
analogy-mapping component [18], however, other algorithms
could also be used.

Despite the psychological plausibility of structure-mapping
theory, critics often point out that SME is very sensitive to the
representation formalism being used [30]. For this reason, we
based the story representation in our system on an established
cognitive semantic model, namely, FD.

B. Force Dynamics

FD is a semantic category defined by cognitive linguist
Leonard Talmy [31]. It is based on the observation that a
wide range of human linguistic and cognitive concepts are
understood by considering them as if they were physical
forces. When representing the semantics of a given sentence
or situation, FD captures fundamental structures such as “the
exertion of force, resistance to such a force, the overcoming of
such a resistance, blockage of the expression of force, removal
of such blockage, and the like” [31, p. 409]. Some of these
constructs are key to narratives, and are hard to represent using
the traditional notions of causality.

A basic FD pattern contains two entities: an agonist (the focal
entity) and an antagonist, exerting force on each other. An ag-
onist has a tendency toward either motion/action or rest/inac-
tion. It can only manifest its tendency if it is stronger than the
opposing antagonist. For example, to represent “The ball kept
rolling because of the wind blowing on it,” the agonist’s (ball)
intrinsic tendency toward rest is overcome by the antagonist’s
(wind) greater force, and hence the result is the motion of the ag-
onist. In other FD structures, the antagonist can function as a fa-
cilitator and help the agonist. At the temporal level, Talmy uses
the concept of phase to describe the interaction between agonist
and antagonist at a particular point in time. A story, therefore,
can be represented as a sequence of phases.

Important to narratives, FD describes not only physical
forces, but also psychological and social interactions. Con-
ceiving such interactions as psychological “pressure,” FD
patterns can manifest themselves in various semantic configu-
rations, such as the “divided self” (e.g., “He held himself from
responding”) and complex social interactions (e.g., “She gets
to go to the park™). Additionally, certain linguistic structures
are force-dynamically neutral (e.g., “He did not respond”).
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To illustrate how we use FD to represent stories, consider the
following example: “Ales always wanted to be a painter, despite
his long working hours. But his job got more demanding, and he
eventually gave up his practice.” Here, the agonist is “Ales” and
the antagonist is his “job.” The story may be divided into two
phases. First, the agonist has the tendency to move, and he is
stronger than the antagonist. In the second phase, their relative
force strength shifts—the antagonist strengthens and sets the
agonist at rest. Details of how FD is integrated into Riu’s story
representation formalism are discussed in Section III-B.

As we argued elsewhere [32], FD can enhance existing story
representations in two main ways. First, it can express complex
relations such as “hindering,” “helping,” and “leaving alone,”
some of which are hard to represent by planing-based represen-
tations. Second, FD’s level of abstraction helps SME find better
analogies (as discussed in our study in Section IV).

III. SAM AND THE RIU SYSTEM

This section presents Riu, focusing on its story representation
and on its ASG components: memory retrieval and SAM.

A. Riu

Riu is a text-based interactive narrative system designed to
explore the connection between an external story world and
the character’s inner world of memories and imagination. So
far, computational analogy-based techniques have been mostly
used to exploit associations between individual self-contained
stories, as in MINSTREL [33] and the Story Translator [34].
Within each story, however, analogical connections play a lim-
ited role, if any. Part of Riu’s goal is to explore analogy both
as the generative technique and as the storytelling device in one
story.

Motivated by the aforementioned literary examples, Riu
focuses on the analogical connection between characters’ ex-
ternal and inner worlds. We explore how to procedurally allow
the two worlds to intersect and influence one another. Our most
recent interactive story world, Evening Tide, is about the last
diving expedition of marine biologist Julian Champagne. In
the full story, the player character’s actions can trigger related
memories, analogous to the current state, and cause the genera-
tion of narratives about his inner thoughts (using SAM). These
thoughts can, in turn, affect the actions available in the external
world. In other words, ASG is used to create an intertwined
parallel narrative structure, connected via analogy. A sample
interaction with Riu can be found in [18].

The high-level architecture for Riu is diagrammed in Fig. 1.
The story engine component interprets user input, and coordi-
nates the other components in the system. The memory retrieval
component identifies memories similar to a given scene, typi-
cally the current state of the story. The imaginative projection
component uses the SAM algorithm to generate stories by ana-
logically transferring knowledge from source to target domain.
Finally, the character model uses the previous two modules to
determine the main character’s behavior, given the user’s input.
Riu has two types of preauthored content: memories and main
story graph, which define the character’s inner world and the
external story world, respectively.

Memory p
haracter
v SCEM| Model
Memory Retrieval Imaginative Projection Recalled
Memories
Scene
Memories Surfage
Similarity Current
Analogy-based Memory Scene
Story Generation
Structural (SAM) Character
Similarity Projection Control
L Action
[ Structure-Mapping Engine (SME) ]
Main
Story Story Engine
Graph
Authored I

Content The Riu System User

Fig. 1. High-level architecture of the Riu system.

Computational analogy is used in two major aspects of Riu:
memory retrieval and imaginative projection. Memory retrieval
is based on the recognition stage of computational analogy
(Section II-A). When Riu needs a memory related to the current
situation, it searches a repository of preauthored memories and
retrieves the most relevant one. Once retrieved, the memory
becomes part of the character model and influences her dispo-
sition toward the world. The imaginative projection process
is based on the elaboration stage of analogy. In this process,
SAM uses analogical projection to infer the consequences of a
particular user-selected action in the story world by transferring
knowledge from one of the recalled memories. In other words,
the system generates a story of the possible consequences of
the action, which might influence the behavior of the main
character.

In order to evaluate the effectiveness of using ASG to make
analogical connections and generate stories, the focus of this
paper, we divided the full Evening Tide story into smaller, non-
interactive snippets. In our user evaluation, we further disasso-
ciate them by changing the protagonist to a different one in each
story. By doing so, we intend to test the intrinsic analogical con-
nections between these stories. It is important to keep in mind
that, in Riu, these story snippets are integrated into a single in-
teractive piece, highlighting the analogy-based interconnection
between the main story world and the player character’s inner
world. Further evaluation of the entire story with user interac-
tion will be conducted in our future work.

B. Story Representation

As observed by others [30] and confirmed in our previous
work [35], the choice of representation formalism has a substan-
tial impact on computational analogy. In Riu, the basic story
representation element is a scene. It is a small encapsulated
piece of story, typically involving one main character in a single
location. In Riu, each memory is a scene and the main story is
represented as a graph where each node corresponds to a scene
and each directional link represents a user action that triggers
the next scene from the current one. A scene is composed of a
series of phases. As in FD, a phase represents the state of the
scene in a particular point in time. The sequence of phases rep-
resents the temporal development. Each scene is represented in
two parallel parts: a computer-understandable description and a
human-understandable description.
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Phase Structure

____________

____________

n< COSC
.—»4—.—» backyard Common

Knowledge
Fig. 2. CUD of a scene in Riu.

1) Computer-Understandable Description (CUD): The
CUD of a given scene is composed of three main parts. First, a
phase structure is used to specify the temporal relation between
the phases. Second, each phase is depicted by a frame-based
representation consisting of entities (e.g., a character or a prop)
and relations (e.g., actions, properties, or relations between
entities). Finally, elements shared between phases are placed
in a common knowledge container, which also contains any
additional domain knowledge we want to include. Notice that
the separation between the common knowledge and individual
phases is only relevant for the human author creating the
stories. At runtime, the common knowledge is incorporated
into each phase.

Fig. 2 shows the CUD representation of a scene from the
Evening Tide story, used for the empirical evaluation presented
below. Here, gray ovals represent entities, and white rectangles
represent relations. In the story, Julian tried to sniff the honey-
suckle plant near a beehive; in the second phase, the bees stung
him, and he had to run back to the house. Here, “Julian” is rep-
resented as an entity of type “human” (entity types form a hier-
archy, which we exclude from the figure for clarity). The action
of “smelling” in the first phase is represented as a relation be-
tween “Julian” and “honeysuckle.”

At the core of the CUD representation is an ontology, that is,
a set of concepts relevant to the story world. In Evening Tide,
we created an ontology containing 114 concepts (e.g., “human,”
“have,” “run,” “by”).I We avoided synonymous concepts as
much as possible in order to reduce the difficulty for SME to
find analogies. For example, in Fig. 2, we used the property
“young” to represent that Julian was a child.

In addition to cross-phase entities and relations, the common
knowledge container includes domain knowledge and common
sense knowledge implicit in the story. For instance, we use it to
specify that the backyard is by the house, and that bees are dan-
gerous. In order to be consistent when adding implicit common
sense knowledge, we only inserted three types of knowledge
in Evening Tide: spatial relations (e.g., the backyard is by the
house), which entities are edible, and which ones are dangerous
(e.g., bees are dangerous).

IThe ontology used for our study can be found along the full source code of
Riu and SAM at: https://sites.google.com/site/santiagoontanonvillar/software.

Phase 1

_______________________________________________

________________________________________________

Phase 2

—>®< l t4: Jullan ran back to the safety of his house. :

Common Knowledge

Fig. 3. HUD of a scene in Riu.

Each phase is annotated with FD elements (Section II-B) to
depict plot/structural-level information such as agonist and an-
tagonist, which one is stronger, the agonist’s move or rest ten-
dency, and the antagonist’s helping or hindering role. As shown
in our experimental evaluation in Section IV-B, FD increases
the quality of the analogies found and the quality of the gener-
ated stories under certain circumstances.

2) Human-Understandable Description (HUD): The HUD
representation is inspired by that of the GRIOT system [12].
In our system, it consists of a collection of preauthored natural
language sentences called templates. They capture the same in-
formation present in the CUD, but in a format that is closer
to natural language. Inheriting the phase structure in the cor-
responding CUD, the HUD for each phase consists of a set
of templates {¢;,...,%,}, and a directed acyclic graph (DAG)
that specifies the order in which they can be sequenced to gen-
erate the final output. Each node in the DAG represents a tem-
plate, and edges specify their sequential order. The DAG allows
us to specify several alternative templates for similar thematic
content.

Fig. 3 shows the HUD of the scene represented in Fig. 2. No-
tice it contains two alternative templates to express similar con-
tent. For example, ¢4 and ¢5 are alternatives to be selected by Riu
randomly at runtime. When equipped with more content, this
DAG structure allows us to increase the variability and replaya-
bility of the story. Additionally, the common knowledge con-
tainer can also have templates. This can be exploited by SAM if
the text output of the generated story contains information from
the common knowledge container.

The CUD and HUD representations are connected through
links between corresponding elements. This process is currently
done manually. Fig. 4 illustrates how a template in Fig. 3 is
connected to the nodes from the graph in Fig. 2. Thanks to
these links, SAM’s manipulations of the CUD can be trans-
lated to the HUD and eventually to natural language output.
This template-based text generation for narrative representation
may be less flexible than other generative natural language-pro-
cessing-based methods. However, our CUD-HUD configura-
tion is interesting in that it allows an algorithm designed to work
primarily with the CUD to also automatically generate text. In
our case, this configuration allows us to focus mainly on ex-
ploring the narrative range of computational narrative at the plot
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Fig. 4. Links between the CUD and the HUD.

level, while still having output that the user can interface with
directly.

C. Memory Retrieval

The memory retrieval component of Riu finds the source sto-
ries most similar to a given target scene. Unless otherwise spec-
ified, source stories in Riu are memories, and the target story is
the current scene from the external story world (simply story
world from now on). Memory retrieval is used both for re-
trieving memories analogous to a given scene in the story world
and for providing a source memory for the imaginative projec-
tion process. It consists of two steps.

1) Surface similarity: Riu first extracts a series of keywords
from the target scene and all candidate memories (as po-
tential source scenes), and selects the & memories which
share the largest number of overlapping keywords with the
current scene (in Evening Tide, k = 3). Keywords are ex-
tracted by taking all the concepts from CUD except for
the FD-based ones. For example, the keywords in Fig. 2
are: “human,” “Julian,” “young,” “beehive,” “bee,” “an-
imal,” “by,” “house,” “location,” “plant,” “honeysuckle,”
and “backyard.”

2) Structural similarity: Then, SME is triggered to compute
analogical mappings between each of % selected mem-
ories and the target scene as well as a numerical score
representing the strength of the mappings. This SME
score indicates how well a given mapping aligns with the
structure-mapping principles, such as systematicity [22].
It is computed by a set of rules, each of which provides a
belief value between — 1 and 1, which are aggregated using
Dempster—Shafer’s rule [36]. Since SME favors deeper,
structural similarity over the surface one (i.e., isolated
nodes), the memory that shares the largest structures with
the target scene will have the highest mapping strength,
and thus will be retrieved.

Other similarity measures than the SME score can also be
used. Elsewhere we have experimented with a measure that ex-
ploited domain knowledge from WordNet [35]. The rationale
behind this two-step process is to minimize the use of the com-
putationally expensive structural similarity by filtering the can-
didates first via surface similarity. This is a well-established pro-
cedure used in other analogy-based memory retrieval computa-
tional models such as many are called/few are chosen (MAC/
FACQC) [37].

D. Analogy-Based Story Generation: SAM

SAM takes two input parameters 7" and S (the target and
source scenes, respectively), and outputs a new scene R, as the

completion of T by analogy with S. We say that R is an ana-
logical projection of S over T'. For the rest of the paper, we will
use the following terminology: an analogical connection is an
individual one-to-one correspondence between a single entity
or relation in the source domain and another one in the target
domain. By contrast, a mapping is the complete set of connec-
tions found between the two domains.

The execution of SAM consists of four main steps:

1) Generate all possible phase mappings: Let Pr and Pgs be

the sets of phases of the two input scenes. We say that an
injective mapping m from Pr to FPs (a mapping in which
each element in Pr is mapped to one in Pg, and not two
elements of Pr are mapped to the same element in Pg) is
consistent when there are no inconsistencies in the ordering
of each pair of phases p1, p2 € Pr with the corresponding
pair of phases in Pg [m(p;) and m(p2)]. This means if py
happens before ps in Pr, m(p1) must also happen before
m(pz2) in Ps.
SAM computes M as the set of all the possible consistent
injective mappings from Pr to Ps. An example of a con-
sistent injective mapping between two scenes is shown in
Fig. 5. Note that there might be a very large number of
these mappings if the number of phases is large. With the
typical number of phases used in Evening Tide, this number
is manageable. Optionally, SAM allows the user to specify
the desired phase mapping as an optional third input pa-
rameter 77z;.

2) Find the analogical mappings: For each phase mapping
m € M, SAM does the following.

« LetPS* = {p € Ps|Tp € Pr:m(p') = p},ie,all the
phases from S in the mapping m.

» ¢4 is constructed as all the entities in the CUDs of the
phases in F§* and in the common knowledge of S. er
is all the entities in the CUDs of T'.

» 7¢& is constructed as all the relations in the CUDs of the
phases in F§* and in the common knowledge of S. r¢
is all the relations in the CUDs of 7'.

* SME is called using er U 77 as the target domain and
e Urd" as the source domain. SME returns two things:
an analogical mapping g,, from the target to the source
domain, and a numerical score s,,.

* m* € M is selected as the phase mapping in M that
maximizes s.,. If M is empty, m* is not defined, and
SAM returns an error token.

3) Construct a resulting scene R: A new scene R is con-
structed in the following way.

* The phase structure DAG of R is copied from S.

* The set of phases in R is Pp = Pr U (Ps \ P2 ). The
CUD of the common knowledge of T is added to all the
phases in Pr that came from Pr, and the CUD of the
common knowledge of S is added to all the phases in
Pgr that came from Pg.

* The common knowledge in R is empty.

4) Transform R using the analogical mapping: The reverse of
the analogical mapping ¢,,+ is applied to all the phases in
Ppr. For each phase p € Pg, the following two steps are
executed.
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 For each entity or relation e € p such that 3¢’ € Sy :
gm»(€') = e, we substitute e by ¢’ in p.

» Everytime an element e € p is substituted by another el-
ement €', we substitute the corresponding sentence frag-
ment of e in the HUD of p by the corresponding sen-
tence fragment of e’ using the links between the CUD
and HUD.

In all the phases in R that are from Fg, if there are any enti-
ties that do not appear in the mapping g,,,«, they are removed.
Sentences and relations that refer to those removed entities are
also removed. For example, irrelevant characters in the source,
and sentences that refer to those, are removed. This last step pre-
vents transferring irrelevant information to the generated scene.

An illustration of this process is shown in Fig. 6. We can see
parts of the CUD and the HUD of a phase, a mapping g gen-
erated by SME, and the result of transforming the phase using
such mapping.

The exploration of different mappings between phases in .S
and T gives SAM significant flexibility. For instance, if the last
phases of S are mapped to the first phases of 7', SAM can project
backwards in time by generating past events that lead to the cur-
rent situation in 7'. Another example is filling in the “temporal
holes” between phases in 7.

E. A Sample Output

In this section, we will show one of the stories generated by
SAM, used in our user study discussed below. A larger sample
story can be found in [38]. Using the following source story:

“Julian hadn’t eaten all day and was counting on the crab
trap to provide him with a feast of hearty shellfish. When
he pulled the trap off the water it was filled with the largest
crabs he had ever seen. So large in fact, that the weight of
them caused the rope to snap just before Julian could pull
the trap onto the deck.”

and the following target story:

“Zack is on deck, ready to face a storm. There’s a flash of
lightning in the distance. Suddenly, there’s a bump on the
side of the boat. Zack looks over. It is a gigantic cod! He’s
never seen one this large and close to the surface before.
The storm is closing in. He races to get some fishing gear
and try to catch it.”

SAM completes the target story by generating the following
extra phase at the end:

“When Zack pulled the fishing gear off the water it was
filled with the largest cod Zack had ever seen. So large in
fact that the weight of cod caused the rope to snap just
before Zack could pull the fishing gear onto the deck.”

To generate this story, step 2 of SAM maps elements from
the source to the target using SME. For instance, “fishing gear”
is mapped to “crab trap,” as we can see in the generated story.
In step 4, SAM takes the second phase of the source story, and
replaces the appearances of “crab trap” by “fishing gear.” In this
case, SAM completed the story by adding one additional phase
at the end.

y Tt o I T T [
T Con o) |

i""""":/_’ ____________________ ‘_m ________ : m(p1) = @

E 'S ’ m(pz2) = qa
s:) Car>—>C gz —>C G5 |
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IV. EVALUATION: A USER STUDY

In order to evaluate the ASG components in Riu, including
memory retrieval and analogical projection, we conducted a
user study to answer the three research questions below.

1) How effective is the ASG component in identifying ana-
logical connections in ways similar to readers in our user
group? We compare our system’s performance with the
readers’ in several aspects of analogy identification.

2) Is our choice of FD suitable in the context of computational
narrative? Here we compare the performance of our system
with FD and with other domain knowledge.

3) What is the quality of the stories generated by our system
from the perspective of the readers? We directly ask the
readers to rate these stories.

As mentioned earlier, our study does not cover the interactive

aspects of Riu. The stories we used are noninteractive snippets
from the larger Evening Tide interactive story.

A. Study Design

Our user study is targeted at the general public between the
ages of 18 and 65. Measures are taken to minimize our influ-
ence on the readers’ interpretation. The participants are only in-
formed of the broad topic of the study—computational narra-
tive; no information about the system or whether/which stories
were generated by the computer are revealed. We also avoid any
unnecessary technical jargon in the phrasing of the survey. For
instance, “source” and “target stories” are simply referred to as
“story A” and “story B.” There is no mention of anything related
to FD. (For consistency, we will continue using the technical ter-
minology here.)

The narrative texts in the study are small excerpts from the
Evening Tide story, authored by a recent graduate from the
Screen Writing program at Drexel University (Philadelphia,
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TABLE I
PROPERTIES OF THE S/T PAIRS USED IN OUR STUDY

FD similarity | Surface similarity
S/T 1 low low
S/IT 2 low high
S/T 3 high low
S/T 4 high high

PA, USA). In the overall design of the stories, we intentionally
kept the tone of the writing close to screenplay, the concise and
bare-bone style of which is more suitable for the capabilities of
our system at this stage than the more elaborate prose fiction
style. All the stories used in this study are composed of two
phases and have simple narrative structures. Some stories have
a strong FD structure, whereas others are FD neutral (i.c.,
where there is no clear agonist or antagonist). When used as a
source story, a story is presented in its entirety. Otherwise, as a
target story, only the first phase is included. The average length
of a source story is 73.25 words, and 38.0 for target stories. As
mentioned above, we changed the name of the protagonist to
a different one in each story in order not to imply any surface
connection. SAM’s generated stories were minimally edited to
eliminate grammatical errors. These revisions correct obvious
low level grammatical mistakes, such as capitalization and
missing determinants. Changes requiring a significant modifi-
cation in the sentences were not made.

The study is organized both by task and by content. It
contains four main tasks, each of which evaluates one of our
system’s main generative steps. In each task, participants an-
swer the same set of questions for four different source/target
(S/T) pairs. Each S/T pair contains a complete source story
and an incomplete target story. The four S/T pairs in the study
were selected to represent different degrees of surface and FD
similarity (Table I). They also represent different degrees of
success in SAM’s performance.

1) Task 1 (Story Elements Mapping): This task is designed
to evaluate to what extent our system can identify mappings be-
tween source and target domains in ways similar to human par-
ticipants. For each S/T pair, a participant sees a source story,
a target story, and two lists of entities (i.e., characters and ob-
jects) and relations (e.g., “Herman is at the booth”) included in
the source and target stories, respectively. We only list entities
and relations explicitly mentioned in the stories in order to min-
imize our particular interpretations. Each participant is asked to
identify as many analogical connections between the two lists
as possible.

2) Task 2 (Story Similarity): This task allows us to compare
the stories that the participants find the most similar to a target
story to Riu’s results. For each of the four S/T pairs, the par-
ticipant is asked to rank four potential matching source stories
based on their respective similarities to a target story.

3) Task 3 (Analogical Projection): This task aims at evalu-
ating the quality of SAM’s analogical projection. For each of
the four S/T pairs, the participant is presented with a complete
source story and an incomplete target story. We first ask her to
continue the incomplete story by writing at most three relatively
simple sentences in English free-text. This method is based on
what is known as the “story continuation test” from the empir-
ical literary studies field [39]. As we intend to “blackbox” Riu’s

analogical projection process from the participant, the following
description is provided as guidance: “If a new story is very sim-
ilar to a known story, we can sometimes predict what happens
by drawing analogy from the known story. Read the complete
story A, and a similar but incomplete story B. Continue story
B in ways you think are the most similar to story A.” Next, we
present the participant with a continuation generated by SAM
and ask her to rate its overall quality on a five-point Likert scale.
In this task, the participant’s free writing offers insight into what
is the most “natural” and relatively unconstrained continuation
to a human reader, and the rating provides a quantitative evalu-
ation of SAM’s output.

4) Task 4 (Overall Story): This task evaluates the quality
of the complete stories generated by SAM. In addition to the
four story continuations generated by SAM (also used in task
3), we added two more as benchmarks. One of them is a poorly
constructed story, created by manually copy-pasting the second
phase of a story after the first phase of another. It represents
what we believe is a low-quality ASG story. The other bench-
mark is, unknown to the participants, written completely by
the human author who created the story world. These two ad-
ditions are intended to set a baseline for the range of scores.
The order in which the six stories are arranged is randomized.
Each story is rated on a five-point Likert scale along three di-
mensions: plot coherency, character believability, and overall
quality. Story generation has multiple challenges; some (e.g.,
character believability) arguably more central to the narrative
content than others (e.g., grammar). In this task, we intend to
separate the different aspects of readers’ satisfaction. Finally,
we ask the participants for any additional feedback.

B. Results

In response to our e-mail recruitment, 31 people completed
the survey. Among them, 27 were male, three were female, and
one was undisclosed. Their age range was between 18 and 49,
with a mean between 26 and 27. Below are results for each task.

1) Task 1 (Story Elements Mapping): This task collects data
on what the participants regard as the appropriate analogical
mapping between the story pairs. In order to assess the contri-
bution of FD, we compared the mappings identified by human
participants with those generated at random, and with those
generated by our system using four different settings of domain
knowledge. The settings are a) SAM-fd: the standard setting
only with FD; b) SAM-bare: a bare setting where we removed
the FD annotations from the standard setting; ¢) SAM-wn:
where we replaced the FD in the standard setting with domain
knowledge of categories automatically extracted from the
“hypern” database in WordNet; and d) SAM-wnfd, including
both FD and WordNet knowledge.

Under the SAM-wn setting, for instance, the entity “fish” is
supplemented with WordNet properties such as “aquatic-verte-
brate,” “vertebrate,” and “animal.” This helps SME match en-
tities from two stories according to how many properties they
share. However, too much domain knowledge will significantly
increase the computational complexity of finding an analogical
mapping using SME. Hence, for each entity, we set the upper
limit of six additional properties in the order WordNet returns
them, as six is the maximum number with which the experi-
ments would run under reasonable time bounds (1 h).
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TABLE II
PROBABILITY THAT A PARTICIPANT IDENTIFIES AN ANALOGICAL CONNECTION
GENERATED BY EACH CONFIGURATION OF SAM (HIGHER IS BETTER),
AND THE NUMBER OF CONNECTIONS FOUND (SIZE)

Rnd. | Hmn. SAM- SAM- SAM- SAM-

fd bare wn wnfd

S/IT1 | 0.04 | 046 0.48 0.35 0.35 0.48
S/T2 | 0.06 | 0.61 0.76 0.81 0.81 0.76
S/T3 | 0.05 0.57 0.48 0.47 0.48 0.48
S/T 4 | 0.07 0.75 0.80 0.80 0.80 0.80
Avg. | 0.05 0.60 0.63 0.61 0.61 0.63
size - 7.14 4.50 3.50 4.00 4.25

For each setting of domain knowledge, we computed the
probability that given a connection identified by SAM, a given
participant also identified that connection. Again, a connection
is a particular one-to-one correspondence between two entities
or relations in source and target domains, whereas a mapping
is the whole set of connections between the two domains. In
other words, if SAM identifies an analogical connection that
no participant reported, this probability is 0. If all participants
reported the same connection as SAM, the probability is 1. We
refer to this probability as the connection score.

The results of the different settings (Table II) show that the
connection score of randomly generated connections is very low
(0.05 on average). By contrast, the connection score of the par-
ticipants is 0.60 (this means that given two participants and a
connection identified by one of them, the probability that the
other participant also identified it, as evaluated using a stan-
dard leave-one-out procedure, is 0.60). This number is closely
matched by SAM’s connection scores using all four versions of
domain knowledge. This means that the connections identified
by SAM are indistinguishable from those identified by a human
participant.

The key difference between human participants and SAM
is the size of the mappings (i.e., the number of analogical
connections) they each find. The participants found an av-
erage of 7.14 connections, whereas SAM found significantly
fewer.2 SAM-bare only finds an average of 3.50 analogical
connections. With the FD annotation, this number rises to 4.50
connections. SAM-wn finds an average of 4.00 connections and
SAM-wnfd finds an average of 4.25 connections. This indicates
that domain knowledge helps SAM identify more connections,
and the knowledge provided by FD is the most effective in
this respect. In particular, SAM with FD could find the largest
amount of connections. It signals that FD annotations provide
compact and useful domain knowledge.

We believe the reason why SAM finds more connections with
FD than with WordNet, interestingly, is the following. Note
that the knowledge added by FD corresponds precisely to the
high-level structure of the scenes, and the knowledge added by
WordNet corresponds to specific properties of the individual en-
tities (and not to their relations). Thus, having in mind that struc-
ture-mapping theory, used by SME, has a bias toward high-level

2For each S/T pair, we only count the number of connections between entities
and relations that are explicitly mentioned in the stories. Connections of the im-
plicit domain knowledge used by SAM, such as FD or categories from WordNet,
are not counted toward this size measure. As described in Section IV-A, the par-
ticipants receive the exact sets of entities and relations without implicit domain
knowledge.

TABLE III
KENDALL 7 CORRELATION INDEX BETWEEN THE GROUND TRUTH AND
1) SEVERAL CONFIGURATIONS OF RIU, 2) A RANDOM ORDERING, AND
3) A RANDOM PARTICIPANT. (LOWER 7 MEANS MORE CORRELATION)

Riu-fd | Riu-bare | Riu-wn | Riu-wnfd
Structural Similarity 0.08 0.13 0.33 0.21
Surface Similarity 0.33 0.33 0.29 0.33
Random Ordering 0.50
Random Participant 0.14

relations, a possible explanation of the results is that SME is
more influenced by the FD knowledge than by that of WordNet.

In terms of particular S/T pairs, S/T 1 in Table II displays
significantly lower connection scores in all three domain knowl-
edge settings compared to other S/T pairs. This is because S/T
1—the S/T pair with low FD similarity and low surface sim-
ilarity—does not support a clear analogy. As a result, partici-
pants tend to disagree in their mappings. By contrast, S/T 4—the
pair with both high FD and surface similarities—exhibits higher
scores. In this pair, most participants find exactly the same ana-
logical mapping, consisting of seven analogical connections.
The mapping found by SAM-fd is very similar; it contains four
connections, all of which are among the seven found by most
participants.

2) Task 2 (Story Similarity): We evaluated how much Riu’s
retrieval results align with the participants’ intuitive notion of
analogical similarity. The participants’ rankings of the poten-
tial matching stories were aggregated using the standard Borda
count [40]. The aggregated participants’ ordering, which we
refer to as the ground truth, is compared with the ranking gener-
ated by Riu’s memory retrieval component. We do so by using
the Kendall 7 ranking correlation index [41], which is O for two
identical orderings, 1 for opposite orderings, and expected to be
around 0.5 for random orderings.

As in task 1, we compared the ground truth with: a) a
random ordering; b) the ordering given by a random participant
in our study; and c) the ordering Riu generated with four
different domain knowledge settings: with only FD, without
FD or WordNet, with only WordNet, and with both. In each
domain knowledge setting, we tested Riu in two conditions:
a) only using a basic surface similarity measure (based on the
percentage of keywords shared between the two stories); and
b) using both surface and structural similarity measures, as
actually used in Riu. Results are summarized in Table III.

The ordering generated by Riu with FD is almost identical to
the ground truth, except for two out of 24 order relations (six
order relations for each of the four S/T pairs), yielding a very
low 7 distance, 0.08. It confirms that Riu’s retrieval component
aligns with the participants’ intuitive notion of similarity in the
short stories. The orderings generated using knowledge from
WordNet are less similar to the ground truth. We believe that
this is because, when using WordNet, the retrieval component
focuses too much on the surface similarity between the entities
in the stories, rather than the story structure. This result shows
that the knowledge provided by FD contributes better to this
similarity assessment than the domain knowledge provided by
WordNet, since the former contains structural relations between
the entities/relations rather than their surface similarity captured
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TABLE IV
A SAMPLE CLUSTERING OF PARTICIPANTS’ FREE-WRITING CONTINUATIONS FOR TASK 3 USING S/T 4

Cluster | Size | Cluster Description Representative Example
1 19 Julian paddles back “Julian had to paddle the motorboat back to the dock.”
2 5 Julian swims back “Julian was forced to swim to shore and explain what happened to his father.”
3 5 They call for help “Herman had to hire a bigger boat to drag the small boat back to the dock.”
> a5/ TABLE V
4 /T2 ANALYSIS OF THE PARTICIPANTS’ FREE-WRITING CONTINUATIONS.
3 S s/T3 “*” MARKS WHERE SAM’S SEMANTIC MISTAKE OCCURRED
2 @ S/Ta Analogous to the Source | Not Analogous
1 / W Average Clusters | = SAM # SAM
0 7%\ SIT 1 6 0 19 11
Fig. 7. Average scores of SAM-generated story continuations in task 3. Error S/T 2 5 11 5 14
bars indicate standard deviation. S/T 3 7 3 20 6
SIT 4 3 19%* 5 5

in the latter. In addition, all the orderings generated using sur-
face similarity are significantly different from the ground truth.
This justifies Riu’s use of the more computationally expensive
structural similarity.

Curiously, the ordering generated by Riu with FD is closer to
the ground truth (7 distance of 0.08) than that of a random par-
ticipant (7 distance of 0.14) in our study. We believe this is due
to the fact that different participants pay attention to different
factors in the stories when assessing their similarities.

3) Task 3 (Analogical Projection): Let us first look at how
the participants rated the quality of the continuations generated
by SAM (standard version with FD) on a five-point Likert scale.
Fig. 7 summarizes the results, showing the means and standard
deviations of the ratings. Among the four SAM-generated story
continuations, S/T 2 and S/T 3 were considered relatively high
quality by the participants (3.70 and 3.27), while the other two
received lower ratings. The continuation rated the lowest was
from S/T 1, quoted below:

[Source:] “In the carnival, Jacob played at a booth where
it had twenty narrow fishbowls with goldfishes inside. He
tossed the blue ball and watched it ricochet off the rims of
the bowls. Jacob cried. Jacob’s father, Andrew, snatched
one of the bowls and gave it to Jacob. The attendant was
intimidated by Andrew’s size and let it slide. Andrew told
Jacob that life wasn’t about fun and games. The goldfish
died a week later and Andrew made Jacob flush it down
the toilet.”

[Target:] “As a child, Eva would often sniff the honey-
suckle in the backyard. Unbeknownst to her, there was a
bee’s nest by the honeysuckle.”

[SAM-Generated Continuation:] “Eva cried.”

As S/T 1 contains low surface and low FD similarity, it is
difficult for SAM to come up with an analogical projection. The
only knowledge it was able to transfer from the source domain
is that the agonist cried. As illustrated below, the participants
faced the same difficulty in their own free-writing.

S/T 4 with high surface and high FD similarity also received a
lower rating, even though SAM transferred a lot of content from
the source story. Based on the qualitative feedback (discussed
below), we believe that this is due to a semantic mistake made

by SAM. In the source story, the protagonist forgot to fill up
the tank of her car. After realizing her mistake, she had to turn
around before reaching her destination. In the target story, a boat
ran out of gas. And yet in the continuation generated by SAM,
the protagonist still drove the boat back, which clearly violates
common sense.

In addition, the participants’ own free-writing story continua-
tions provided us with useful information to contextualize their
ratings of the ones generated by SAM. For each S/T pair, we first
clustered these continuations using grounded theory methods.
For example, for S/T 4, the target story was the following (the
source is not included due to space limits):

“Herman, Julian’s father, owned a small motorboat. One
night Julian snagged the keys and took the boat from the
dock to a nearby island without permission. The boat ran
out of gasoline in the middle of the bay.”

The participants’ continuations for this particular story were
grouped into three clusters, based on their analogical projection.
One example of each cluster is shown in Table IV.

Our further analysis of the results is summarized in Table V.
The “clusters” column shows the number of clusters obtained.
In S/T pairs with low surface similarity (i.e., S/T 1 and 3), par-
ticipants came up with a more varied set of continuations. By
contrast, in S/T 4 (strong FD and surface similarity), most par-
ticipants converge in how to continue the story.

All participants’ continuations are also divided into two
groups based on whether they are analogous to the source.
Among those that are analogically related, we further dif-
ferentiate those containing the same analogies as the ones
SAM found (“= SAM” column) from the others (“# SAM”
column). We categorize two analogies as the same when two
continuations depict the same narrative events, even though
they are depicted through different text. For story pairs with
high surface similarity (S/T 2 and 4), a significant number
of participant-authored continuations are similar to SAM’s.
In particular, for S/T 4, 19 out of all 29 participant-authored
continuations have almost identical content: the protagonist
has to row back to a dock. SAM generated a very similar
continuation, where the protagonist brings the boat back to a
dock. However, due to the semantic mistake discussed above,
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Fig. 8. Average scores of SAM-generated stories in task 4, compared to two

benchmark stories. Error bars indicate standard deviations.
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SAM did not understand that when a boat is out of gas, it cannot
be brought back differently. In cases where there are no strong
FD similarities (S/T 1 and 2), the participants’ continuations
often do not contain clear analogical connections to the source
story. It illustrates that the participants encountered similar
difficulties as SAM did in this situation.

4) Task 4 (Overall Story): In this final task, the participants
rated the quality (i.e., story coherence, character believability,
and overall quality) of six complete stories: four generated by
SAM (standard with FD), one poorly constructed story, and one
written by a human author. Results, summarized in Fig. 8, show
that the ratings for the low-quality story and the human-au-
thored story define the two extremes and set the context for
the rest. The scores obtained by SAM are closer to those of
the human-written story than to the low-quality one. Specially
in terms of character believability, SAM’s score was relatively
high (3.88 on average out of five compared to 4.43). Certain
generated stories, 2 and 3, obtain much higher scores than the
average. Comparing Figs. 7 and 8, we can see that the overall
scores obtained by the stories in task 4 are highly correlated with
those in task 3, as expected.

Although there is a strong correlation with identical ordering
of the four stories (Pearson correlation coefficient of 0.95), the
same story is always rated higher in task 4 than in task 3. This
is an interesting phenomenon because the stories have not been
changed. A possible reason is that the ratings of task 3 were col-
lected right after the participants wrote their own continuation.
Thus, they may have higher expectations for the quality of the
continuations provided to them at that time. Another possibility
is that in task 4, the overall ratings are collected after rating of
specific narrative dimensions. In other words, this number is in-
fluenced by the participants’ immediately prior rankings for co-
herence and character believability.

5) Users Feedback: The feedback provided some further in-
sights into the obtained results. For example, several partici-
pants complained that they identified additional analogies be-
tween the S/T pair, but were not able to specify them using the
given list of entities and relations in task 1. This means that the
CUD and/or the ontology we authored could be improved, po-
tentially leading to better results.

A number of participants mentioned that some stories
had grammatical mistakes and thus had rated them lower.
Remember that although we fixed some obvious low-level
grammatical mistakes in stories generated by SAM (e.g.,
capitalization, missing determinants), changes requiring a
significant modification in the sentences were not made. These

comments indicate that the quality of the text used to represent
our stories had an impact on the user ratings. We believe that
text generation is an integral part of computational narrative
that contributes to a user’s engagement. We have already started
working toward this goal in our current work [42].

Several participants wondered which stories were created by
computers and which by humans. Some even asked whether
some of the semantic mistakes, such as the “boat running out
of gas,” were introduced purposefully or were errors.

Finally, some feedback may explain the very large number
of analogies identified by participants in task 1. One comment
says: “A few analogy-matching parts seemed like a stretch and
I provided answers where in everyday circumstances I would
normally say there was no analogy.” It shows that some partic-
ipants may have gone to great lengths to identify analogies that
they normally would not have identified.

C. Discussion

Summarizing, our user study has helped us answer our three

research questions (Section 1V).

1) Analogies found by our system align with analogies found
by our participants. Also, the retrieval mechanism aligns
with the participants’ intuitive notion of similarity in the
short stories. These are specially important facts given the
result of task 3, where we see that identifying the appro-
priate source stories is crucial to the success of ASG. When
the source was not sufficiently similar to the target, most of
our participants did not continue the target by analogy. In-
stead, they invented a continuation that is mostly unrelated
to the source.

2) A common theme across all our results is that FD helps
SME, the internal algorithm used by our system, to find
analogies, for better retrieval and projection results. We be-
lieve that this is because FD aligns particularly well with
structure-mapping theory by providing plot-level informa-
tion about the relations between the narrative elements in
the stories.

3) Although the quality of stories generated by SAM is still
not on a par with a human-authored story, participants rated
some of SAM’s stories relatively highly, specially in terms
of character believability.

V. RELATED WORK

As we have described SAM and Riu in detail, this section
will offer targeted comparison with related work. One of the
most related algorithms to SAM is the Story Translator [34].
It uses analogy as the main generative method and planning to
fill in the gaps in the analogy-generated content. Its input is a
story represented as a plan and two domain models. The do-
main models contain the set of objects and planning operators
available in each domain. The CAB algorithm [25] is used to
find a mapping between the two domain models, and this map-
ping is then used to translate the input story from one domain to
the other, filling the gaps using planning in case the mapping is
not complete. The main difference between SAM and the Story
Translator is that the Story Translator only computes analogies
between domain models, whereas SAM also operates with spe-
cific narrative events. For example, SAM can find an analogical
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connection concerning the specific event “Eva would often sniff
the honeysuckle,” whereas the Story Translator would focus on
analogies concerning the general definition of the planning op-
erator sniff. Notice that SAM can also operate at this level, if as
part of the domain knowledge, the properties of sniff are spec-
ified. Also, SAM directly generates text; the Story Translator
returns its generated stories in the form of plans. This allows
SAM not to be confined by the expressive restrictions of plans,
and its output can be directly presented to an average user.

Computational analogy was also used by Li and Riedl [43]
for story generation. However, in the approach of Li and Riedl,
analogy was used to create new types of gadgets to be used
inside a planning-based story generation system, rather than to
generate actual story events.

The related technique of case-based reasoning (CBR) has
been used in story generation systems [33], [44]. For example,
MINSTREL [33] is a general model of creativity that gen-
erates stories by executing transform-recall-adapt methods
(TRAMs). Some of those TRAMs, like the ”cross-domain-so-
lution” TRAM, use computational analogy. In particular, given
a problem (an incomplete story) in a domain D;, the TRAM
finds another domain D» and an analogical mapping between
D+ and D, (similar to the Story Translator). Then, it maps the
story from D1 to D5, solves the problem, and then maps back
the result from D> to D;.

By contrast, MEXICA [45] generates stories by adding one
action at a time to a given story. In order to select the next ac-
tion to add, MEXICA retrieves, from a story repository, a past
story that is the most similar to the current state of the story. This
process of comparison can be seen as trying to find an analogical
mapping between the current story state, and the past stories.
Whereas the Story Translator and MINSTREL find analogies at
the domain definition level, MEXICA finds them between spe-
cific story states [called story-world contexts (SWCs)], which
are equivalent to the phases in our system. In contrast with those
systems, Riu uses both domain definitions (domain knowledge)
and specific narrative events to find analogies between the target
and source stories.

Other work that uses analogy-related techniques includes
the PRINCE system [46]. It enriches a story by generating
metaphors about its story elements in the domain 7 using
their equivalents in domain S. Also, the GRIOT system [12]
implements the conceptual blending theory [47] and uses it to
generate affective blends for interactive poetry.

Overall, comparing ASG to planning-based systems (such as
Tale-spin [8] and Fabulist [10]), the latter have the advantage
in that the author can specify the initial and ending states of a
story, and thus may have more direct control of the generated
story. In ASG systems, such control is exerted by providing
different source stories. In general, a source story in ASG can
influence both the content and the discourse of the generated
story. Stories generated by planning tend to focus on actions
and change, as indicated by the planning operators. ASG sys-
tems, however, do not have this bias. If the source and target sto-
ries are action based, then the resulting story will also be more
likely so, but if the source and target stories are very descriptive,
the same will be passed on to the resulting stories. In terms of
knowledge engineering needed, planning systems require a do-

main model with a complete planning operator definition, while
ASG systems require a collection of source stories. Both ap-
proaches depend significantly on the labor-intensive knowledge
engineering process.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have presented and evaluated an approach
to story generation based on computational analogy. The key
characteristics of our technical approach are: 1) the use of a dual
representation formalism for stories having a CUD and a HUD;
2) the use of FD to enhance the story representation especially
at the plot level; and 3) the internal use of structure-mapping
theory to find analogies between stories by means of the SME
algorithm.

In this paper, we have placed our focus on the empirical eval-
uation of the ASG components of our Riu system: a story re-
trieval component and a story generation component (SAM).
The study confirmed our three main hypotheses: 1) similarity
and analogical mapping in our system aligns with the partici-
pants’ intuitive perception of them; 2) FD significantly enhances
story generation in Riu; and 3) stories of relatively high quality
can be generated using computational analogy.

The evaluation provided us with a significant amount of in-
sight for future work. As already reported in the evaluation of
MINSTREL [33] and confirmed in our study, participants are
influenced by the quality of the final text. Therefore, we plan
to extend SAM’s text generation capabilities, as explored in
our current work [42]. Additionally, semantic mistakes can also
drastically affect readers’ reaction to the stories. We intend to
exploit additional domain knowledge about the entities and re-
lations to minimize such mistakes. For example, we intend to
explore commonsense knowledge-bases such as CyC or Open
Mind, or the incorporation of action definition knowledge, as
used in planning-based story generation systems.

As media theorists and art historians have repeatedly pointed
out, technological invention by itself does not automatically de-
liver the birth of a medium. After the first public screening in
the Grand Café in 18935, for instance, it took filmmakers and in-
ventors decades to invent the medium by developing the major
elements of filmic storytelling, including the closeup, the chase
scene, and the standard feature length [3]. In this process, a
key component was to expand the range of expressions a film
could convey. Informed by the history of traditional media, our
long-term goal is to broaden the expressive power of compu-
tational narrative so that it can encompass a wider variety of
human experiences and conditions. This paper presents one of
our first steps toward this goal by exploring analogy-based story
generation and evaluating these stories from the vantage point
of the readers.
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