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Abstract

We present a case-based approach to character identifi-
cation in natural language text in the context of our Voz
system. Voz first extracts entities from the text, and for
each one of them, computes a feature-vector using both
linguistic information and external knowledge. We pro-
pose a new similarity measure called Continuous Jac-
card that exploits those feature-vectors to compute the
similarity between a given entity and those in the case-
base, and thus determine which entities are characters
or not. We evaluate our approach by comparing it with
different similarity measures and feature sets. Results
show an identification accuracy of up to 93.49%, sig-
nificantly higher than recent related work.

Introduction

Computational narrative systems, especially story genera-
tion systems, require the narrative world to be encoded in
some form of structured knowledge representation formal-
ism (Bringsjord and Ferrucci 1999; Ontafién and Zhu 2011).
Currently this representation is mostly hand-authored for
most computational narrative systems. This is a notoriously
time-consuming task requiring expertise in both storytelling
and knowledge engineering. This well-known “authorial
bottleneck” problem can be alleviated by automatically ex-
tracting information, at both linguistic and narrative levels,
from existing written narrative text.

Except for a few pieces of work such as (Elson 2012;
Finlayson 2008), automatically extracting structure-level
narrative information directly from natural language text has
not received much attention. We would like to further con-
nect the research areas of computational narrative and Natu-
ral Language Processing (NLP) in order to develop methods
that can automatically extract structural-level narrative in-
formation (e.g., Proppian functions) directly from text.

In this paper, we present our approach to automatically
identifying characters from unannotated stories in natural
language (English). Characters play a crucial role in stories;
they make events happen and push the plot forward. De-
pending on the genre, people along with anthropomorphized
animals and objects can all act as characters in a story. Be-
ing able to identify which entities in the text are characters
is a necessary step toward our long-term goal of extracting
structure-level narrative information such as character roles.
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We present a case-based approach for character identifi-
cation in the context of our system Voz. After extracting en-
tities from the text, Voz computes a set of 193 features using
both linguistic information in the text and external knowl-
edge. We propose a new similarity measure called Contin-
uous Jaccard to compute similarity between a given entity
and those in the case-base of our system, and thus determine
whether the new entity is a character or not. We evaluate our
approach by comparing it with different similarity measures
and feature sets. Results show an identification accuracy of
93.49%, a significant increase from recent related work.

The rest of this paper is organized as follows. We first
present related work. Then we discuss our approach for
case-based character identification. After presenting our
dataset and feature set, we discuss our empirical evaluation.
Finally we conclude and discuss directions of future work.

Related Work

Character identification, related to named entity recognition
and nominal actor detection, is a crucial step toward nar-
rative structure extraction. Goyal et al’s AESOP system
(2010) explored how to extract characters and their affect
states from textual narrative in order to produce plot units
(Lehnert 1981) for a subset of Aesop fables. The system
used both domain-specific assumptions (e.g., only two char-
acters per fable) and external knowledge (word lists and hy-
pernym relations in WordNet) in its character identification
stage. More recently, Calix et al. (2013) proposed an ap-
proach for detecting characters (called ‘““sentient actors” in
their work) in spoken stories based on features in the tran-
scribed textual content using ConceptNet and speech pat-
terns (e.g., pitch). Their system detects characters through
supervised learning techniques and uses this information for
improving document retrieval. The work presented in this
paper follows this line of work, but we propose a case-based
approach with an extended set of features and a new similar-
ity measure, obtaining significantly better results.

Also relevant for the work presented in this paper is that
of more general narrative structure extraction. Chambers
and Jurafsky (2008) proposed using unsupervised induction
to learn what they called “narrative event chains” from raw
newswire text. In order to learn Schankian script-like in-
formation about the narrative world, they use unsupervised
learning to detect the event structures as well as the roles



of their participants (characters) without pre-defined frames,
roles, or tagged corpora (2009). On some related work, Reg-
neri et al (2011) worked on the specific task of identifying
matching participants in given scripts in natural language
text using semantic and structural similarities and using In-
teger Linear Programming (Wolsey 2000). In the work pre-
sented in this paper, we adapted some of the features used by
these more general narrative extraction systems for the task
of character identification.

Case-based Character Identification

Our character identification method uses Case-Based Rea-
soning (CBR) (Aamodt and Plaza 1994), a family of al-
gorithms that reuse past solutions to solve new problems.
The previously solved problems, called cases, are stored in
a case-base. In our approach, each case is an entity, repre-
sented as a feature-vector, already annotated as either char-
acter or non-character by a human.

In this paper, we address the following problem: given
an entity e, extracted from an unannotated story s in nat-
ural language, determine whether e is a character in story
s. In this context, “entities” could be characters, props, or
other objects (potentially referred to by pronouns), and are
defined as a given node in the parse tree of a sentence (and
its associated subtree).

In a nutshell, for each new target entity to be classified,
a feature-vector is constructed to compare the target entity
with the entities in the case-base. The most similar entity
in the case-base is retrieved and used to predict whether the
target entity is a character or not. The key steps of this pro-
cess are: entity extraction, feature-vector construction and
entity classification. Below we discuss these processes in
the context of our Voz system, which aims at automatically
extracting narrative information such as characters and their
roles in a given story from natural language text. In this
paper, we focus on the character identification part of the
system.

Entity Extraction. Voz uses the Stanford CoreNLP suite
to segment the input text into sentences and to annotate
them with the following information: part-of-speech (POS)
tags (i.e., whether a word is a noun, a verb, etc.), syntactic
parse trees (i.e., the syntactic structure of a sentence), typed
dependency lists (i.e., relations between adjectives and the
nouns they refer to, verbs and their subject and object com-
plements, etc.) and lemmatization (i.e., removing inflection
to obtain base words). Then Voz traverses each of the sen-
tence parse trees looking for any “noun phrase” (NP) node,
since NP nodes are candidate entities. For each NP node, Voz
does the following. If the subtree contains nested clauses or
phrases, or if the leaves of the subtree contain an enumer-
ation (a conjunction or a list separator token), then Voz tra-
verses its associated subtree recursively. Otherwise, if any
leaf in the subtree is a noun, personal pronoun or possessive
pronoun, the node is marked as an entity, and its subtree not
explored any further. We do not use any form of coreference
resolution during this stage. This results in a set of entities
E={ey,....,en}.
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Figure 1: Syntactic parse of a sentence annotated by Voz
after the entity extraction process.

Using this process, for example, Voz detected three enti-
ties, shaded in light gray in Figure 1, from the input sen-
tence “The master of the ship saw the boy.” After finding
the compound NP “The master of the ship,” (1) the system
recursively detected two nested entities, “the master” (2) and
“the ship” (3).

Feature-Vector Construction. For each entity e; € F,
Voz computes a set of features. The features are computed
from the parse tree of the sentence where the entity is found,
the subtree representing the entity, the leaves of the subtree
(i.e., word-level tokens with POS tags) and the dependency
lists that contain a reference to any node in the entity’s sub-
tree. When looking at the word-level tokens, Voz queries
knowledge bases such as WordNet, ConceptNet and some
word lists (often referred in the NLP literature as dictionar-
ies or gazetters). The list of specific features we compute is
described in detail below. For now, it suffices to say that Voz
computes a feature-vector of length m for each entity, where
each feature is numeric and in the interval of [0, 1].

Entity Classification. Given an entity e, Voz uses a case-
based reasoning (CBR) approach to classify it into a set
of classes S. For the purposes of this paper, S =
{character, non-character}. As any CBR system, Voz
contains a case-base C = {cy,...,¢;}, where each case
¢i = (e;, 8;) is composed of an entity e; and a class s; € S.
When classifying a new entity, the most similar instance to
e from the case-base is selected, and the class of e is pre-
dicted as the that of the retrieved case. To determine the
most similar case, we use a distance measure that we call
the Continuous Jaccard distance.

The Jaccard index (Jaccard 1912) is a very well-known
similarity function between two sets (A, B) defined as the
“size of their intersection, divided by the size of their union”:

_|ANB|
- |AU B]

Most of the features computed by Voz represents whether
an entity satisfies a given property or not (e.g., whether the
entity if the subject of a verb or not). If the entity satis-
fies the property, then the feature has value 1, and if it does
not, then the feature has value 0. Thus, we could see an
entity e as a set of properties (that contains each property
for which its corresponding attribute has value 1), and thus,

J(A, B)



we should be able to apply the Jaccard index for assessing
similarity between entities. However, some of the features
are actually continuous (e.g., how similar is an entity to a
given concept) and thus can take intermediate values like
0.5. Therefore, the standard formulation of the Jaccard in-
dex cannot be used directly. We hence generalized the no-
tion of the Jaccard similarity by borrowing the notion of a
t-norm form the field of Fuzzy Logic (Klement, Mesiar, and
Pap 2000). Intuitively, a t-norm (triangular norm) is a func-
tion that generalizes the concepts of intersection in set theory
and conjunction in logic. By interpreting the “intersection”
and “union” in the Jaccard index as a t-norm and a t-conorm
(the equivalent of the “union”), we replaced them by appro-
priate t-norms and t-conorms for numerical values: the min
and max operators, resulting in the following measure, that
we call Continuous Jaccard:

Z;n:l min(fi(e1), fi(e2))
>ty maz(fier), fi(e2))

where we write f;(e) to represent the value of the ith feature
of the entity e. When the two entities are identical, D is 0.
If they are completely disjoint, D is 1.

In the experiments reported in this paper, we compare the
results obtained with this measure against two other standard
distance measures:

DJ(617€2) =1-

e Fuclidean distance: a standard euclidean distance be-
tween the feature vectors representing each entity:

Z (filer) — fi(BQ))Q

1=1...m

Dg(er,e) =

e Cosine distance (Salton and Buckley 1988): a standard
distance measure used in text retrieval:

N >iny filer)fie2)
Vil file)? /3oL filez)?

Additionally, given that different features might con-
tribute more or less to the classification of each entity, we
experimented with two variants of each of the previous dis-
tance metrics: standard (as presented above) and weighted.

In the weighted versions of the similarity measures, we
computed a numerical weight for each feature by using
Quinlan’s Gain (Quinlan 1986). In our previous work
(Ontaiién and Plaza 2012) in the context of distance mea-
sures, we observed that it achieved good results in comput-
ing feature weights. Weights are computed based on the
cases in the case-base. For each feature f, the case-base
is divided in two sets: C', with those cases where f < 0.5
and C'5, with those where f > 0.5. Then, Quinlan’s Gain is
computed as:

Dc(ehez) =1

H(Cl) X |Cl| +H(CQ) X ‘02‘
C]
where H(C) represents the entropy of the set of cases C

(with respect to the distribution of classes). We also evalu-
ated other procedures for determining weights, such as using

Q(f) = H(C) -
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the mutual information. However, we obtained significantly
worse performance using them.

The weighted versions of the three distance measures
above result from multiplying the contribution of each fea-
ture to the similarity by the corresponding weight. Specifi-
cally, in each distance, each term in each of the summations
(the sum in the Euclidean distance, the three sums in the Co-
sine distance, and the two sums in the Jaccard distance) is
multiplied by the weights of the corresponding feature. The
weighted Continuous Jaccard measure is thus defined as:

Yoiny Q(fi)min(fier), fiea))
Yoy Q(fi)maz(fi(er), filez))

Dataset

To test our approach, we use a collection of Russian folk
tales translated into English as our dataset. The tales are ei-
ther analyzed by Vladimir Propp (1973) or available in the
Proppian Fairy Tale Markup Language collection!. As these
have been translated by different authors these stories con-
tain a variety of linguistic and narrative features and styles.

To reduce parsing issues when using Stanford CoreNLP
we manually removed from the text: 1) dialogues, and 2)
passages where the narrator addressed the reader directly
(e.g., “If you think of it ...” where “you” refers to the reader).
The original text in our dataset contains 384 sentences, as
segmented by Stanford CoreNLP. After the edits, the text
contains 269 sentences with an average length of 3.86 words,
or 71.56 characters. The stories range from 7 to 48 sentences
with an average of 28.75 sentences (o = 14.30).

Specific to character identification, the text includes a
range of different types of characters: humans, animals (e.g.,
a talking mouse) and anthropomorphic objects (e.g., a magi-
cal oven, a talking river). There are also fantastical creatures
(e.g., goblins) and characters specific to the Russian folk-
lore tradition (e.g., Morozko and Baba Yaga). We seek to
identify these characters from the text without hand-coding
specific knowledge such as knowing that “Morozko” is a tra-
ditional Russian character.

The dataset for our experiments consists of the entities
extracted from the edited text. They are extracted using the
entity extraction process described above. Specifically, there
are 1122 entities, which were annotated as either characters

or non-characters by hand for experimentation purposes?.

Dyy(er,e2) =1—

Feature Set

Selecting the right features to describe an entity is key to
character identification. Building upon the features pro-
posed by (Calix et al. 2013), we included a set of addi-
tional features, showing a significant increase in accuracy.
Voz currently extracts 193 different features per entity. Due
to limitations of space, we will only describe the different
types of features we use and how they are extracted instead

' Available:
results.html

20ur complete dataset is available at: https://sites.google.com/
site/josepvalls/home/voz

http://clover.slavic.pitt.edu/sam/propp/praxis/



of providing a comprehensive list. The complete feature set
is available online along with our dataset’.

Linguistic Features

We included features at the linguistic level to help identify
entities as characters or otherwise.

Sentence Parse Tree Features. Voz looks at the parse tree
of the sentence where an entity is found and extracts fea-
tures related to the nodes containing the entity, such as its
depth and the presence of adverbial, adjectival or preposi-
tional phrases. These features may indicate how relevant
an entity is in a sentence or the semantic role it plays. There
are 11 features in this category. For example, the fromNodeS
feature captures whether the entity is found directly under a
sentence node (S). fromNodePP describes whether the entity
is found in a nested prepositional phrase node (PP).

Entity Parse Subtree Features. Voz traverses the subtree
representing the entity and extracts features related to the
types (i.e., syntactic labels) and number of nodes found
indicating nested noun phrases. These features may indi-
cate the presence of nested noun phrases, typically found
in proper nouns and proper names composed of common
nouns. There are 9 features in this category. For example,
hasNodeNP captures that the entity has a nested noun phrase
node (NP).

POS Tag Features. Voz enumerates the leaves of the entity
subtree and extracts features related to the POS tags assigned
to the word-level tokens. The features account for the pres-
ence of common nouns, proper nouns, pronouns, adjectives
or existentials (e.g., “there”) that may indicate specific types
of entities. There are 26 features in this category. For ex-
ample, hasTokenJJ captures that there is an adjective in the
entity, and hasTokenPRP$ captures that there is a possessive
pronoun in the entity.

Dependency List Features. Voz enumerates the lists of
dependencies and extracts several types of dependencies. A
dependency, in this context, is a relation between two ele-
ments in a sentence (the dependent and the governor). For
example, it can be the relation between a verb with its sub-
ject, direct object or indirect object, or the relation between
a determiner and the noun it is referring to. In Figure 1, for
instance, there is a dependency of type “direct-object” be-
tween “saw” (the governor) and “the boy” (the dependent).
For verb dependencies, we look at both active and pas-
sive voices for each identified verb in a sentence. Overall,
Voz records if 1) an entity appears as a subject or object
of any verb, 2) if it appears as subject or object of specific
verbs (e.g., “have” or “tell”’) and 3) the similarity of the verb
where an entity appears to some predefined clouds of con-
cepts (e.g., one such cloud is “reward,” “pay,” “give”). Simi-
larity between a verb and a cloud is computed similarly how
the similarity between a noun and a cloud is computed, as
described below. The features computed from these account
for typological semantic roles for the verb cloud arguments.

*https://sites.google.com/site/josepvalls/home/voz
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Typically for verbs like “talk” or “tell”, the subject and di-
rect object arguments are likely to be characters. For the
verbs like “have” or “give”, the object is less likely to be a
character than the subject.

Voz also looks at other dependencies, specifically the re-
lationships of nouns with prepositions, possessives and de-
terminers. Voz computes features to identify when an entity
has a determiner or wether an entity possesses something
or is possessed by something else. These features indicate
relationships between entities and an entity posessing some-
thing is more likely to be a character than an entity that is
possessed by some other entity.

Overall, we use 3 features for determining if an entity ap-
pears as a subject of a verb and 6 to determine which argu-
ment of a verb an entity appears in, 62 features from verb
dependencies for single verbs, 20 from verb clouds, 14 from
prepositions, 4 from determiners, and 4 from other depen-
dencies. For example, the isVerbSubject feature captures
whether the entity appears as the subject of one (any) verb.
isVerbSubjectCloudMove captures that the entity appears as
the subject of a verb, this feature accounts for the similarity
to a cloud of verbs like “move”, “go” or “arrive.” depHead-
PrepOf captures that the entity is used as the head of a de-
pendency with the preposition “of.” depHeadPoss captures
that the entity is the governor of a possessive dependency
indicating that it is possessed by some other entity.

External Knowledge Features

Voz also uses external knowledge from WordNet, Concept-
Net, and lists of words to compute features from words in
the entity subtree.

WordNet-based Features. We defined several clouds of
concepts, where each “concept” is a set of WordNet synsets.
For example, one of these clouds is formed by synsets re-
lated to the concept of “youth” while another is related to
the concept of “villainy”. The similarity between the cloud
and each noun (word with a noun POS tag) in the entity is
computed, and the average value is the final value of the
feature (if there are no nouns in the entity, then the feature
takes value 0). To assess the similarity of a noun with a
cloud of synsets, we use the measure proposed by Wu &
Palmer (1994) to compute similarity between the noun and
each of the synsets in the clouds. This measure returns a
value between 0 and 1. Among the similarity values for each
sysnet, the maximum value is used. There are 8 features in
this category. An example feature is hasWordnetAgeYoung.
This feature is based on the similarity of words in the en-
tity to synsets related to “youth.” The cloud contains adjec-
tives like “young” and nouns like “baby”, “child”, “boy”” and
“gir]”. These features may indicate similarities with certain
character archetypes and when building our clouds we used
Propp’s work as a reference. We defined 8 clouds with each
containing between 3 and 17 synsets.

ConceptNet-based Features. Following the work of
Calix et al. (2013), we query ConceptNet and look for some
properties in the relationships of the returned concepts. We
look at edges of certain types (e.g., “IsA” and “RelatedTo”)
connecting to some specific nodes (e.g., magic, wizard) to



compute the 9 features in this category. For example, the
feature hasConceptnetHumanCapabilities captures whether
any nouns in the entity have ConceptNet relationships of
the type “CapableOf” to concepts such as “laugh”, “feel”
or “love”. There are 9 features and each checks between 3
and 9 edges.

Word List Features Our word lists are what are com-
monly referred to in the NLP literature as dictionaries or
gazetters. The main difference between clouds and word
lists is that Voz uses a similarity measure for clouds, and ex-
act matching for word lists (i.e., if Voz finds a word from
the entity inside of the given word list, the feature will have
value 1, otherwise it will have value 0). There are 6 features
from lists of nouns and 11 features from lists of other types
words, with each feature defining its own word list and also
the set of POS tags to filter the words that can be matched.
We have a list of names including 2943 male and 5001 fe-
male names (an external list without modification based on
birth records) and another with 306 common nouns includ-
ing titles and professions. We have lists of words for iden-
tifying number (e.g., they, them), gender (e.g., he, she) and
gender neutrality (e.g., another, other, this, that...). For ex-
ample, the hasWordInCommonNamesFemale feature checks
a word list of common nouns conceptually related to female
gender or with female inflection like “witch”, “nun”, “lady”
or “actress”. The hasWordInSingularThirdPersonGeneric
feature captures words identifying singular, third person ob-
jects such as “one”, “another”, “this” or “which.” There are
7 additional lists and each has between 3 and 27 words.

Experimental Evaluation

To evaluate our approach we used the dataset presented
above, containing 1122 entities. We hand-labelled these in-
stances, obtaining 615 labelled as “Character” and 507 la-
beled as “Non-Character.” Each entity is represented as a
feature-vector with 193 features. The experiments presented
in this section are designed to answer two main questions:

Q1: Which similarity measure is more effective in our case-
based approach for character identification?

Q2: Among all the features we use, which ones are more
effective?

To answer the first question, we evaluated the perfor-
mance of the above described six distance measures: Eu-
clidean, Cosine and Continuous Jaccard (Sg, Sc, Sy),
and their corresponding weighted versions (S, g, Swc, and
Sw.y). All the results presented in this section are the re-
sult of a cross validation procedure, which works as follows:
given that the 1122 instances in our dataset come from 8§ dif-
ferent stories, we split the 1122 instances into 8 different sets
according to the story they come from. Then, when we try
to predict the label for the entities in a given story, we only
include in the case-base the instances coming from the other
7 stories.

Table 1 shows the performance of the 6 distance mea-
sures on our complete dataset. Performance is reported as
accuracy, precision and recall. The first thing we can ob-
serve is that all the weighted variants of the distance mea-
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Table 1: Performance of the different distance measures over
the complete dataset (1122 instances) measured as classifi-
cation accuracy (Acc.) and Precision/Recall (PRec/Rec.).

| Distance | Acc. | Prec./Rec. |
Sk 86.45% | 0.91/0.83
SwE 88.41% | 0.92/0.86
Sc 87.08% | 0.91/0.85
Swe 89.22% | 0.93/0.87
Sy 86.45% | 0.91/0.84
SwJ 91.27% | 0.93/0.91

sures outperform their non-weighted versions. For example,
the weighted Euclidean distance (S,, ) can classify 88.41%
of the instances correctly into characters/non-characters,
whereas the non-weighted Euclidean distance (Sg) only
classifies correctly 86.45%. Moreover, we can see that the
best performance is achieved with our weighted-Continuous
Jaccard distance measure (S, 7), which correctly classifies
91.27% of the instances. This is also reflected in the preci-
sion and recall values.

We compared our results against Stanford’s Named En-
tity Recognition (NER), which achieved a precision of 0.98,
but an extremely low recall, of 0.09, since it only recog-
nizes, as PERSON, entities that have capitalized names. We
also compared our results against standard machine learn-
ing classifiers, using the WEKA software. AdaBoost ob-
tained precision and recall of 0.79/0.92. This unexpected
low performance is due to the sensitivity of boosting classi-
fiers to noise. Surprisingly, from the classifiers available in
WEKA, J48 achieved the best performance with P/R scores
of 0.92/0.91, slightly below that of .S, .

Moreover, we noticed that in our dataset, many charac-
ters are often referred to with personal pronouns (i.e., “he”
or “she”), clearly indicating that they are characters (non-
character entities, such as props or scenario elements are
never referred to using these personal pronouns). So, in or-
der to present our system with a bigger challenge, we re-
peated our experiments but removing all the instances that
consisted of personal pronouns, excluding the pronoun “it”
since it is used for both characters (anthropomorphic objects
and animals) and non-characters (objects or settings). This
left us with 886 instances. Results are reported in Table 2.
As expected, performance decreased (specially for the non-
weighted distance measures). However, our S, ; distance
measure was able to keep classification accuracy over 90%.

To answer our second question (Q2), we performed a
set of experiments using our complete dataset (1122 in-
stances) where we removed different sets of features from
our dataset. Specifically Table 3 reports the performance of
the S, ; measure in the following scenarios: each row in Ta-
ble 3 represents a different set of features (from the types
of features described before); each row reports how many
features are in each set, the performance of S,,; when only
using features of in the given set, and also when using all the
features except the ones of in the given set. For example, the
first row of Table 3 (WordNet) reports the classification accu-
racy that .S,, s obtains when only using the 8 features coming



Table 2: Performance of the different distance measures over
the a reduced dataset removing all the “trivial” instances
(886 instances) measured as classification accuracy (Acc.)
and Precision/Recall (Prec/Rec.).

| Distance | Acc. | Prec./Rec. |
Sk 83.18% | 0.86/0.72
SwE 88.26% | 0.90/0.82
Sc 83.74% | 0.85/0.76
Swe 88.71% | 0.89/0.84
Sy 83.41% | 0.86/0.74
SwJ 90.18% | 0.91/0.86

Table 3: Performance of the S,,; distance measure with dif-
ferent feature subsets: Acc. only reports the accuracy only
using features of a given type, and Acc. all except reports the
accuracy using all the features except the ones of the given
type. N reports the number of features of each type.

| Feature Subset | N | Acc. only | Acc. all except |

WordNet 8 81.11% 87.88%
Entity Parse Subtree | 9 70.59% 90.81%
POS Tags 26 | 68.27% 91.09%
Sentence Parse Tree | 11 | 66.84% 90.55%
Lists of Nouns 6 66.04% 88.15%
Verb Clouds 20 | 56.33% 91.00%
Lists of Words 11| 54.72% 91.44%
Verb List 62 | 54.37% 91.18%
Prepositions 14 | 54.01% 91.09%
ConceptNet (Calix) 9 52.85% 90.46%
Verb Subject/Object | 3 51.43% 91.89%
Other Dependencies | 4 50.89% 90.91%
Verb Argument 6 50.45% 91.18%
Determiners 4 48.13% 91.53%

from the parse tree containing the entity (81.11%) and also
when using all the features except those 11 (87.88%).
Analyzing the results, we can see that clearly the features
that most contribute to the performance of our approach are
those coming from WordNet: using only the 8 features com-
ing from WordNet, S,,; achieves a classification accuracy
of 81.55%, which is remarkable. Other types of features
that are very important are the Lists of Words, those com-
ing from Entity Parse Subtree, and from the Sentence Parse
Tree. Also, notice that there are some features that when re-
moved performance actually increases (e.g., Determiners).
Surprisingly, a feature that we hypothesized would be very
helpful (whether an entity is the subject of a verb or not)
does not actually help in the classification. Finally, there are
some sets of features, such as those coming from Concept-
Net (ConceptNet (Calix)), which contribute to the perfor-
mance of the system, but are not enough for themselves to
do any accurate classification of entities. Finally, notice that
the most important set of features (WordNet) are continuous,
justifying the need for our new Continuous Jaccard measure.
We performed an additional experiment removing the 3
sets of features that make the performance increase when re-
moved, and we obtained a classification accuracy of 93.49%
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(a significant increase). In summary, we found that fea-
tures coming from the parse tree, from the POS tags (Nodes
Within), from WordNet, from several word lists were the
most useful in classifying entities into characters and not
characters. Features coming from specific verbs turn out
to be very sparse for actually helping in the classification.
Given the moderate size of our dataset, we believe that
93.49% is a very promising result, which could be improved
by increasing the size of the dataset being used.

If we compare these results with work reported in the lit-
erature, Calix et al. (2013) report 84.3% accuracy using an
Euclidean Distance, and 86.1% using Support Vector Ma-
chines. Performance is not strictly comparable, since they
used a different dataset (with almost 5000 instances), but
the numbers seem to indicate that our Continuous Jaccard
measure, combined with the set of features we determined
above, outperforms these results.

Conclusions

In this paper we presented a case-based approach for ex-
tracting narrative information, namely identifying charac-
ters, from folk tales in natural language text. We proposed a
collection of features to perform this task, and a new similar-
ity measure (Continuous Jaccard) that outperforms previous
work on this problem. In order to evaluate our approach, we
implemented it in Voz, a system that aims at automatically
extracting narrative information from natural language sto-
ries. Specifically, given a story, Voz extracts a set of entities,
computes a feature-vector for each one and then classifies
those entities as characters and non-characters.

Our experimental results show that our approach signif-
icantly improves results wen compared to recent related
work. Specifically, we achieve 93.49% accuracy on the task
of classifying extracted entities as either characters and non-
characters after filtering out a proper set of features. We
also show that the set of features that are most important for
the task of character identification are those exploiting the
knowledge in WordNet. This shows that semantic informa-
tion is key for determining what is a character.

The work presented in this paper is one step toward our
long-term goal of automatically extracting high-level narra-
tive information from natural language text. The improve-
ments on our character identification method with respect to
our previous work (Valls-Vargas, Ontafién, and Zhu 2013)
will directly impact the performance of the overall Voz sys-
tem, which aims at identifying not only characters, but also
other high-level information such as their roles in the story.

As part of our future work, we plan on creating a larger
dataset for better evaluation of our methods (which will be
made publicly available). We also want to improve the meth-
ods described in this paper to go beyond classifying entities
as characters/non-characters and also detect which ones are
props, which ones refer to events, time anchors, or refer to
the environment (i.e., the scenery surrounding a scene) or
setting (e.g., the land where the story happens), in order to
be able to fully classify each entity in a story along Chat-
man’s narrative taxonomy (Chatman 1980).
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